Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    No Preview Available
    Arf5-mediated regulation of mTORC1 at the plasma membrane.
    Makhoul, C ; Houghton, FJ ; Hinde, E ; Gleeson, PA ; Trejo, J (American Society for Cell Biology (ASCB), 2023-04-01)
    The mechanistic target of rapamycin (mTOR) kinase regulates a major signaling pathway in eukaryotic cells. In addition to regulation of mTORC1 at lysosomes, mTORC1 is also localized at other locations. However, little is known about the recruitment and activation of mTORC1 at nonlysosomal sites. To identify regulators of mTORC1 recruitment to nonlysosomal compartments, novel interacting partners with the mTORC1 subunit, Raptor, were identified using immunoprecipitation and mass spectrometry. We show that one of the interacting partners, Arf5, is a novel regulator of mTORC1 signaling at plasma membrane ruffles. Arf5-GFP localizes with endogenous mTOR at PI3,4P2-enriched membrane ruffles together with the GTPase required for mTORC1 activation, Rheb. Knockdown of Arf5 reduced the recruitment of mTOR to membrane ruffles. The activation of mTORC1 at membrane ruffles was directly demonstrated using a plasma membrane-targeted mTORC1 biosensor, and Arf5 was shown to enhance the phosphorylation of the mTORC1 biosensor substrate. In addition, endogenous Arf5 was shown to be required for rapid activation of mTORC1-mediated S6 phosphorylation following nutrient starvation and refeeding. Our findings reveal a novel Arf5-dependent pathway for recruitment and activation of mTORC1 at plasma membrane ruffles, a process relevant for spatial and temporal regulation of mTORC1 by receptor and nutrient stimuli.
  • Item
    Thumbnail Image
    Interacting partners of Golgi-localized small G protein Arl5b identified by a combination of in vivo proximity labelling and GFP-Trap pull down
    Houghton, FJ ; Makhoul, C ; Cho, EH-J ; Williamson, NA ; Gleeson, PA (WILEY, 2022-09)
    The small G protein Arl5b is localised on the trans-Golgi network (TGN) and regulates endosomes-to-TGN transport. Here, we combined in vivo and in vitro techniques to map the interactive partners and near neighbours of Arl5b at the TGN, using constitutively active, membrane-bound Arl5b(Q70L)-GFP in stably expressing HeLa cells, and the proximity labelling techniques BioID and APEX2 in parallel with GFP-Trap pull down. From MS analysis, 22 Golgi proteins were identified; 50% were TGN-localised Rabs, Arfs and Arls. The scaffold/tethering factors ACBD3 (GCP60) and PIST (GOPC) were also identified, and we show that Arl5b is required for TGN recruitment of ACBD3. Overall, the combination of in vivo labelling and direct pull downs indicates a highly organised complex of small G proteins on TGN membranes.
  • Item
    Thumbnail Image
    Dynamics of intracellular neonatal Fc receptor-ligand interactions in primary macrophages using biophysical fluorescence techniques
    Pannek, A ; Houghton, FJ ; Verhagen, AM ; Dower, SK ; Hinde, E ; Gleeson, PA ; Munson, M (AMER SOC CELL BIOLOGY, 2022-01-01)
    The neonatal Fc receptor (FcRn) is responsible for the recycling of endocytosed albumin and IgG, and contributes to their long plasma half-life. We recently identified an FcRn-dependent recycling pathway from macropinosomes in macrophages; however, little is known about the dynamics of intracellular FcRn-ligand interactions to promote recycling. Here we demonstrate a multiplexed biophysical fluorescent microscopy approach to resolve the spatiotemporal dynamics of albumin-FcRn interactions in living bone marrow-derived macrophages (BMDMs). We used the phasor approach to fluorescence lifetime imaging microscopy (FLIM) of Förster resonance energy transfer (FRET) to detect the interaction of a FcRn-mCherry fusion protein with endocytosed Alexa Fluor 488-labeled human serum albumin (HSA-AF488) in BMDMs, and raster image correlation spectroscopy (RICS) analysis of single fluorescent-labeled albumin molecules to monitor the diffusion kinetics of internalized albumin. Our data identified a major fraction of immobile HSA-AF488 molecules in endosomal structures of human FcRn-positive mouse macrophages and an increase in FLIM-FRET following endocytosis, including detection of FRET in tubular-like structures. A nonbinding mutant of albumin showed minimum FLIM-FRET and high mobility. These data reveal the kinetics of FcRn-ligand binding within endosomal structures for recruitment into transport carriers for recycling. These approaches have wide applicability for analyses of intracellular ligand-receptor interactions.
  • Item
    Thumbnail Image
    Amyloid precursor protein traffics from the Golgi directly to early endosomes in an Arl5b-and AP4-dependent pathway
    Toh, WH ; Tan, JZA ; Zulkefli, KL ; Houghton, FJ ; Gleeson, PA (WILEY, 2017-03)
    The intracellular trafficking and proteolytic processing of the membrane-bound amyloid precursor protein (APP) are coordinated events leading to the generation of pathogenic amyloid-beta (Aβ) peptides. The membrane transport of newly synthesized APP from the Golgi to the endolysosomal system is not well defined, yet it is likely to be critical for regulating its processing by β-secretase (BACE1) and γ-secretase. Here, we show that the majority of newly synthesized APP is transported from the trans-Golgi network (TGN) directly to early endosomes and then subsequently to the late endosomes/lysosomes with very little transported to the cell surface. We show that Arl5b, a small G protein localized to the TGN, and AP4 are essential for the post-Golgi transport of APP to early endosomes. Arl5b is physically associated with AP4 and is required for the recruitment of AP4, but not AP1, to the TGN. Depletion of either Arl5b or AP4 results in the accumulation of APP, but not BACE1, in the Golgi, and an increase in APP processing and Aβ secretion. These findings demonstrate that APP is diverted from BACE1 at the TGN for direct transport to early endosomes and that the TGN represents a site for APP processing with the subsequent secretion of Aβ.
  • Item
    No Preview Available
    Cargo sorting and endosome-to-Golgi retrograde transport pathways.
    Chia, PZ ; Houghton, FJ ; Hatters, DM ; Gleeson, PA (AMER SOC CELL BIOLOGY, 2012)
  • Item
    No Preview Available
    Application of flow cytometry to analyze intracellular location and trafficking of cargo in cell populations.
    Toh, WH ; Houghton, FJ ; Chia, PZC ; Ramdzan, YM ; Hatters, DM ; Gleeson, PA (Springer New York, 2015)
    Pulse shape analysis (PulSA) is a flow cytometry-based method that involves the measurement of the pulse width and height of a fluorescently labeled molecule simultaneously, enabling a multidimensional analysis of protein localization in a cell at high speed and throughput. We have used the method to detect morphological changes in organelles such as Golgi fragmentation, track protein trafficking from the cell surface, and also discriminate cells with different target protein localizations such as the Golgi, lyso-endosomal network, and the plasma membrane. Here, we describe the basic experimental setup and analytical methods for performing PulSA to examine membrane trafficking processes. We illustrate in particular the application of PulSA for monitoring the trafficking of the membrane-bound enzyme furin and morphological changes to the Golgi caused by Brefeldin A.
  • Item
    Thumbnail Image
    High-Throughput Quantitation of Intracellular Trafficking and Organelle Disruption by Flow Cytometry
    Chia, PZC ; Ramdzan, YM ; Houghton, FJ ; Hatters, DM ; Gleeson, PA (WILEY, 2014-05)
    Current methods for the quantitation of membrane protein trafficking rely heavily on microscopy, which has limited quantitative capacity for analyses of cell populations and is cumbersome to perform. Here we describe a simple flow cytometry-based method that circumvents these limitations. The method utilizes fluorescent pulse-width measurements as a highly sensitive indicator to monitor the changes in intracellular distributions of a fluorescently labelled molecule in a cell. Pulse-width analysis enabled us to discriminate cells with target proteins in different intracellular locations including Golgi, lyso-endosomal network and the plasma membrane, as well as detecting morphological changes in organelles such as Golgi perturbation. The movement of endogenous and exogenous retrograde cargo was tracked from the plasma membrane-to-endosomes-to-Golgi, by decreasing pulse-width values. A block in transport upon RNAi-mediated ablation of transport machinery was readily quantified, demonstrating the versatility of this technique to identify pathway inhibitors. We also showed that pulse-width can be exploited to sort and recover cells based on different intracellular staining patterns, e.g. early endosomes and Golgi, opening up novel downstream applications. Overall, the method provides new capabilities for viewing membrane transport in thousands of cells per minute, unbiased analysis of the trafficking of cargo, and the potential for rapid screening of inhibitors of trafficking pathways.