Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    No Preview Available
    POSTTRANSLATIONAL MODIFICATIONS DISTINGUISH CELL-SURFACE FROM GOLGI-RETAINED BETA-1,4 GALACTOSYLTRANSFERASE MOLECULES - GOLGI LOCALIZATION INVOLVES ACTIVE RETENTION
    TEASDALE, RD ; MATHESON, F ; GLEESON, PA (OXFORD UNIV PRESS UNITED KINGDOM, 1994-12)
    beta 1,4 Galactosyltransferase (GalT) is a membrane-bound enzyme localized predominantly to the trans-Golgi cisternae. Our previous studies have shown that the transmembrane domain of bovine GalT plays a critical role in Golgi localization (Teasdale, R.D., D'Agostaro, G. and Gleeson, P.A., J. Biol. Chem., 267, 4084-4096, 1992). Here we have compared the localization and post-translational modifications of full-length bovine GalT with a GalT/hybrid molecule where the transmembrane domain of GalT was replaced with that of the transferrin receptor. GalT/hybrid molecules were expressed on the surface of transfected cells; however, differences were observed in the distribution of the hybrid molecules between transfected COS and murine L cells. In transfected COS cells, the GalT/hybrid protein was expressed efficiently at the cell surface, with little Golgi-localized material, whereas in stable murine L cells, which expressed lower levels of the construct, hybrid molecules were detected both at the cell surface and within the Golgi apparatus. Expression of the GalT constructs in either COS or L cells produced two glycoprotein products which differed in molecular mass by 7 kDa. The difference in size between the two products is due to post-translational modifications which are inhibited by brefeldin A and are therefore likely to occur in the trans-Golgi network (TGN). Very little of the high-molecular-weight species was detected for full-length GalT, whereas it was a major product for the GalT/hybrid protein. Only the higher molecular weight species was expressed at the cell surface. Thus, this additional 7 kDa post-translational modification distinguishes molecules retained within the Golgi apparatus (lower M(r) species) from those transported through the TGN to the cell surface. These studies indicate that (i) the level of expression influences the intracellular distribution of GalT/hybrid molecules and (ii) the localization of full-length GalT involves active retention within the Golgi stack, and not retrieval from later compartments. After treatment of membrane preparations from stable L cell clones with a heterobifunctional cross-linking agent, full-length bovine GalT molecules were found almost exclusively as high-molecular-weight aggregates, suggesting that GalT exists as an oligomer or aggregate. This ability to oligomerize may be a requirement for Golgi retention.
  • Item
    No Preview Available
    TARGETING OF PROTEINS TO THE GOLGI-APPARATUS
    GLEESON, PA ; TEASDALE, RD ; BURKE, J (SPRINGER, 1994-10)
    The Golgi apparatus maintains a highly organized structure in spite of the intense membrane traffic which flows into and out of this organelle. Resident Golgi proteins must have localization signals to ensure that they are targeted to the correct Golgi compartment and not swept further along the secretory pathway. There are a number of distinct groups of Golgi membrane proteins, including glycosyltransferases, recycling trans-Golgi network proteins, peripheral membrane proteins, receptors and viral glycoproteins. Recent studies indicate that there are a number of different Golgi localization signals and mechanisms for retaining proteins to the Golgi apparatus. This review focuses on the current knowledge in this field.
  • Item
    Thumbnail Image
    PHOTOAFFINITY-LABELING OF CHLOROQUINE-BINDING PROTEINS IN PLASMODIUM-FALCIPARUM
    FOLEY, M ; DEADY, LW ; NG, K ; COWMAN, AF ; TILLEY, L (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 1994-03-04)
    A photoreactive analog of chloroquine, N-(4-(4-diethylamino-1-methylbutylamino)quinolin-6-yl)-4- azi do-2- hydroxybenzamide (referred to as ASA-Q), has been synthesized and shown to mimic the action of chloroquine in possessing substantial antimalarial activity against a chloroquine-sensitive strain of Plasmodium falciparum. As for chloroquine, ASA-Q is less effective at killing drug-resistant strains of malaria, and the resistance can be modulated using the reagent verapamil. ASA-Q has been radiolabeled with Na125I and used as a photoaffinity probe for labeling chloroquine-binding proteins in malaria-infected erythrocytes. Two proteins have been identified with apparent molecular masses of 42 and 33 kDa in both chloroquine-sensitive and chloroquine-resistant strains of malaria. Photoaffinity labeling of the two proteins by iodo-ASA-Q was competitively inhibited by an excess of unlabeled chloroquine. The structurally related antimalarials amodiaquine and quinine also inhibited labeling of the two proteins, while verapamil and doxycycline had no effect. We suggest that the two labeled proteins are the macromolecular targets of chloroquine action in malaria parasites.