Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    Synthesis, conformation, and activity of human insulin-like peptide 5 (INSL5)
    Hossain, MA ; Bathgate, RAD ; Kong, CK ; Shabanpoor, F ; Zhang, S ; Haugaard-Jonsson, LM ; Rosengren, KJ ; Tregear, GW ; Wade, JD (WILEY-BLACKWELL, 2008-07-21)
    Insulin-like peptide 5 (INSL5) was first identified through searches of the expressed sequence tags (EST) databases. Primary sequence analysis showed it to be a prepropeptide that was predicted to be processed in vivo to yield a two-chain sequence (A and B) that contained the insulin-like disulfide cross-links. The high affinity interaction between INSL5 and the receptor RXFP4 (GPCR142) coupled with their apparent coevolution and partially overlapping tissue expression patterns strongly suggest that INSL5 is an endogenous ligand for RXFP4. Given that the primary function of the INSL5-RXFP4 pair remains unknown, an effective means of producing sufficient quantities of this peptide and its analogues is needed to systematically investigate its structural and biological properties. A combination of solid-phase peptide synthesis methods together with regioselective disulfide bond formation were used to obtain INSL5. Both chains were unusually resistant to standard synthesis protocols and required highly optimized conditions for their acquisition. In particular, the use of a strong tertiary amidine, DBU, as N(alpha)-deprotection base was required for the successful assembly of the B chain; this highlights the need to consider incomplete deprotection rather than acylation as a cause of failed synthesis. Following sequential disulfide bond formation and chain combination, the resulting synthetic INSL5, which was obtained in good overall yield, was shown to possess a similar secondary structure to human relaxin-3 (H3 relaxin). The peptide was able to inhibit cAMP activity in SK-N-MC cells that expressed the human RXFP4 receptor with a similar activity to H3 relaxin. In contrast, it had no activity on the human RXFP3 receptor. Synthetic INSL5 demonstrates equivalent activity to the recombinant-derived peptide, and will be an important tool for the determination of its biological function.
  • Item
    Thumbnail Image
    Defining the LGR8 residues involved in binding insulin-like peptide 3
    Scott, DJ ; Wilkinson, TN ; Zhang, S ; Ferraro, T ; Wade, JD ; Tregear, GW ; Bathgate, RAD (ENDOCRINE SOC, 2007-07)
    The peptide hormone insulin-like peptide 3 (INSL3) is essential for testicular descent and has been implicated in the control of adult fertility in both sexes. The human INSL3 receptor leucine-rich repeat-containing G protein-coupled receptor 8 (LGR8) binds INSL3 and relaxin with high affinity, whereas the relaxin receptor LGR7 only binds relaxin. LGR7 and LGR8 bind their ligands within the 10 leucine-rich repeats (LRRs) that comprise the majority of their ectodomains. To define the primary INSL3 binding site in LGR8, its LRRs were first modeled on the crystal structure of the Nogo receptor (NgR) and the most likely binding surface identified. Multiple sequence alignment of this surface revealed the presence of seven of the nine residues implicated in relaxin binding to LGR7. Replacement of these residues with alanine caused reduced [(125)I]INSL3 binding, and a specific peptide/receptor interaction point was revealed using competition binding assays with mutant INSL3 peptides. This point was used to crudely dock the solution structure of INSL3 onto the LRR model of LGR8, allowing the prediction of the INSL3 Trp-B27 binding site. This prediction was then validated using mutant INSL3 peptide competition binding assays on LGR8 mutants. Our results indicated that LGR8 Asp-227 was crucial for binding INSL3 Arg-B16, whereas LGR8 Phe-131 and Gln-133 were involved in INSL3 Trp-B27 binding. From these two defined interactions, we predicted the complete INSL3/LGR8 primary binding site, including interactions between INSL3 His-B12 and LGR8 Trp-177, INSL3 Val-B19 and LGR8 Ile-179, and INSL3 Arg-B20 with LGR8 Asp-181 and Glu-229.
  • Item
    Thumbnail Image
    Characterization of novel splice variants of LGR7 and LGR8 reveals that receptor signaling is mediated by their unique low density lipoprotein class A modules
    Scott, DJ ; Layfield, S ; Yan, Y ; Sudo, S ; Hsueh, AJW ; Tregear, GW ; Bathgate, RAD (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2006-11-17)
    The relaxin and insulin-like peptide 3 receptors, LGR7 and LGR8, respectively, are unique members of the leucine-rich repeat-containing G-protein-coupled receptor (LGR) family, because they possess an N-terminal motif with homology to the low density lipoprotein class A (LDLa) modules. By characterizing several LGR7 and LGR8 splice variants, we have revealed that the LDLa module directs ligand-activated cAMP signaling. The LGR8-short variant encodes an LGR8 receptor lacking the LDLa module, whereas LGR7-truncate, LGR7-truncate-2, and LGR7-truncate-3 all encode truncated secreted proteins retaining the LGR7 LDLa module. LGR8-short and an engineered LGR7 variant missing its LDLa module, LGR7-short, bound to their respective ligands with high affinity but lost their ability to signal via stimulation of intracellular cAMP accumulation. Conversely, secreted LGR7-truncate protein with the LDLa module was able to block relaxin-induced LGR7 cAMP signaling and did so without compromising the ability of LGR7 to bind to relaxin or be expressed on the cell membrane. Although the LDLa module of LGR7 was N-glycosylated at position Asn-14, an LGR7 N14Q mutant retained relaxin binding affinity and cAMP signaling, implying that glycosylation is not essential for optimal LDLa function. Using real-time PCR, the expression of mouse LGR7-truncate was detected to be high in, and specific to, the uterus of pregnant mice. The differential expression and evolutionary conservation of LGR7-truncate further suggests that it may also play an important role in vivo. This study highlights the essential role of the LDLa module in LGR7 and LGR8 function and introduces a novel model of GPCR regulation.