Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Structure guided prediction of Pyrazinamide resistance mutations in pncA
    Karmakar, M ; Rodrigues, CHM ; Horan, K ; Denholm, JT ; Ascher, DB (NATURE PUBLISHING GROUP, 2020-02-05)
    Pyrazinamide plays an important role in tuberculosis treatment; however, its use is complicated by side-effects and challenges with reliable drug susceptibility testing. Resistance to pyrazinamide is largely driven by mutations in pyrazinamidase (pncA), responsible for drug activation, but genetic heterogeneity has hindered development of a molecular diagnostic test. We proposed to use information on how variants were likely to affect the 3D structure of pncA to identify variants likely to lead to pyrazinamide resistance. We curated 610 pncA mutations with high confidence experimental and clinical information on pyrazinamide susceptibility. The molecular consequences of each mutation on protein stability, conformation, and interactions were computationally assessed using our comprehensive suite of graph-based signature methods, mCSM. The molecular consequences of the variants were used to train a classifier with an accuracy of 80%. Our model was tested against internationally curated clinical datasets, achieving up to 85% accuracy. Screening of 600 Victorian clinical isolates identified a set of previously unreported variants, which our model had a 71% agreement with drug susceptibility testing. Here, we have shown the 3D structure of pncA can be used to accurately identify pyrazinamide resistance mutations. SUSPECT-PZA is freely available at: http://biosig.unimelb.edu.au/suspect_pza/.
  • Item
    Thumbnail Image
    Empirical ways to identify novel Bedaquiline resistance mutations in AtpE
    Karmakar, M ; Rodrigues, CHM ; Holt, KE ; Dunstan, SJ ; Denholm, J ; Ascher, DB ; Mokrousov, I (PUBLIC LIBRARY SCIENCE, 2019-05-29)
    Clinical resistance against Bedaquiline, the first new anti-tuberculosis compound with a novel mechanism of action in over 40 years, has already been detected in Mycobacterium tuberculosis. As a new drug, however, there is currently insufficient clinical data to facilitate reliable and timely identification of genomic determinants of resistance. Here we investigate the structural basis for M. tuberculosis associated bedaquiline resistance in the drug target, AtpE. Together with the 9 previously identified resistance-associated variants in AtpE, 54 non-resistance-associated mutations were identified through comparisons of bedaquiline susceptibility across 23 different mycobacterial species. Computational analysis of the structural and functional consequences of these variants revealed that resistance associated variants were mainly localized at the drug binding site, disrupting key interactions with bedaquiline leading to reduced binding affinity. This was used to train a supervised predictive algorithm, which accurately identified likely resistance mutations (93.3% accuracy). Application of this model to circulating variants present in the Asia-Pacific region suggests that current circulating variants are likely to be susceptible to bedaquiline. We have made this model freely available through a user-friendly web interface called SUSPECT-BDQ, StrUctural Susceptibility PrEdiCTion for bedaquiline (http://biosig.unimelb.edu.au/suspect_bdq/). This tool could be useful for the rapid characterization of novel clinical variants, to help guide the effective use of bedaquiline, and to minimize the spread of clinical resistance.