Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Bapineuzumab captures the N-terminus of the Alzheimer's disease amyloid-beta peptide in a helical conformation
    Miles, LA ; Crespi, GAN ; Doughty, L ; Parker, MW (NATURE PORTFOLIO, 2013-02-18)
    Bapineuzumab is a humanized antibody developed by Pfizer and Johnson & Johnson targeting the amyloid (Aβ) plaques that underlie Alzheimer's disease neuropathology. Here we report the crystal structure of a Fab-Aβ peptide complex that reveals Bapineuzumab surprisingly captures Aβ in a monomeric helical conformation at the N-terminus. Microscale thermophoresis suggests that the Fab binds soluble Aβ(1-40) with a K(D) of 89 (±9) nM. The structure explains the antibody's exquisite selectivity for particular Aβ species and why it cannot recognize N-terminally modified or truncated Aβ peptides.
  • Item
    Thumbnail Image
    Small Molecule Binding to Alzheimer Risk Factor CD33 Promotes Aβ Phagocytosis
    Miles, LA ; Hermans, SJ ; Crespi, GAN ; Gooi, JH ; Doughty, L ; Nero, TL ; Markulic, J ; Ebneth, A ; Wroblowski, B ; Oehlrich, D ; Trabanco, AA ; Rives, M-L ; Royaux, I ; Hancock, NC ; Parker, MW (CELL PRESS, 2019-09-27)
    Polymorphism in the microglial receptor CD33 gene has been linked to late-onset Alzheimer disease (AD), and reduced expression of the CD33 sialic acid-binding domain confers protection. Thus, CD33 inhibition might be an effective therapy against disease progression. Progress toward discovery of selective CD33 inhibitors has been hampered by the absence of an atomic resolution structure. We report here the crystal structures of CD33 alone and bound to a subtype-selective sialic acid mimetic called P22 and use them to identify key binding residues by site-directed mutagenesis and binding assays to reveal the molecular basis for its selectivity toward sialylated glycoproteins and glycolipids. We show that P22, when presented on microparticles, increases uptake of the toxic AD peptide, amyloid-β (Aβ), into microglial cells. Thus, the sialic acid-binding site on CD33 is a promising pharmacophore for developing therapeutics that promote clearance of the Aβ peptide that is thought to cause AD.