Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    Thumbnail Image
    Genome Sequence of Acinetobacter baumannii Strain D36, an Antibiotic-Resistant Isolate from Lineage 2 of Global Clone
    Hamidian, M ; Hawkey, J ; Holt, KE ; Hall, RM (AMER SOC MICROBIOLOGY, 2015-12-17)
    Multiply antibiotic-resistant Acinetobacter baumannii isolate D36 was recovered in Australia in 2008 and belongs to a distinct lineage of global clone 1 (GC1). Here, we present the complete 4.13 Mbp genome sequence (chromosome plus 4 plasmids), generated via long read sequencing (PacBio).
  • Item
    Thumbnail Image
    Genome Sequence of Acinetobacter baumannii Strain A1, an Early Example of Antibiotic-Resistant Global Clone 1
    Holt, KE ; Hamidian, M ; Kenyon, JJ ; Wynn, MT ; Hawkey, J ; Pickard, D ; Hall, RM (AMER SOC MICROBIOLOGY, 2015-03-12)
    Acinetobacter baumannii isolate A1 was recovered in the United Kingdom in 1982 and belongs to global clone 1 (GC1). Here, we present its complete 3.91-Mbp genome sequence, generated via a combination of short-read sequencing (Illumina), long-read sequencing (PacBio), and manual finishing.
  • Item
    Thumbnail Image
    Genome-scale rates of evolutionary change in bacteria
    Duchene, S ; Holt, KE ; Weill, F-X ; Le Hello, S ; Hawkey, J ; Edwards, DJ ; Fourment, M ; Holmes, EC (MICROBIOLOGY SOC, 2016-11)
    Estimating the rates at which bacterial genomes evolve is critical to understanding major evolutionary and ecological processes such as disease emergence, long-term host-pathogen associations and short-term transmission patterns. The surge in bacterial genomic data sets provides a new opportunity to estimate these rates and reveal the factors that shape bacterial evolutionary dynamics. For many organisms estimates of evolutionary rate display an inverse association with the time-scale over which the data are sampled. However, this relationship remains unexplored in bacteria due to the difficulty in estimating genome-wide evolutionary rates, which are impacted by the extent of temporal structure in the data and the prevalence of recombination. We collected 36 whole genome sequence data sets from 16 species of bacterial pathogens to systematically estimate and compare their evolutionary rates and assess the extent of temporal structure in the absence of recombination. The majority (28/36) of data sets possessed sufficient clock-like structure to robustly estimate evolutionary rates. However, in some species reliable estimates were not possible even with 'ancient DNA' data sampled over many centuries, suggesting that they evolve very slowly or that they display extensive rate variation among lineages. The robustly estimated evolutionary rates spanned several orders of magnitude, from approximately 10-5 to 10-8 nucleotide substitutions per site year-1. This variation was negatively associated with sampling time, with this relationship best described by an exponential decay curve. To avoid potential estimation biases, such time-dependency should be considered when inferring evolutionary time-scales in bacteria.
  • Item
    Thumbnail Image
    Inferring demographic parameters in bacterial genomic data using Bayesian and hybrid phylogenetic methods
    Duchene, S ; Duchene, DA ; Geoghegan, JL ; Dyson, ZA ; Hawkey, J ; Holt, KE (BMC, 2018-06-19)
    BACKGROUND: Recent developments in sequencing technologies make it possible to obtain genome sequences from a large number of isolates in a very short time. Bayesian phylogenetic approaches can take advantage of these data by simultaneously inferring the phylogenetic tree, evolutionary timescale, and demographic parameters (such as population growth rates), while naturally integrating uncertainty in all parameters. Despite their desirable properties, Bayesian approaches can be computationally intensive, hindering their use for outbreak investigations involving genome data for a large numbers of pathogen isolates. An alternative to using full Bayesian inference is to use a hybrid approach, where the phylogenetic tree and evolutionary timescale are estimated first using maximum likelihood. Under this hybrid approach, demographic parameters are inferred from estimated trees instead of the sequence data, using maximum likelihood, Bayesian inference, or approximate Bayesian computation. This can vastly reduce the computational burden, but has the disadvantage of ignoring the uncertainty in the phylogenetic tree and evolutionary timescale. RESULTS: We compared the performance of a fully Bayesian and a hybrid method by analysing six whole-genome SNP data sets from a range of bacteria and simulations. The estimates from the two methods were very similar, suggesting that the hybrid method is a valid alternative for very large datasets. However, we also found that congruence between these methods is contingent on the presence of strong temporal structure in the data (i.e. clocklike behaviour), which is typically verified using a date-randomisation test in a Bayesian framework. To reduce the computational burden of this Bayesian test we implemented a date-randomisation test using a rapid maximum likelihood method, which has similar performance to its Bayesian counterpart. CONCLUSIONS: Hybrid approaches can produce reliable inferences of evolutionary timescales and phylodynamic parameters in a fraction of the time required for fully Bayesian analyses. As such, they are a valuable alternative in outbreak studies involving a large number of isolates.
  • Item
    Thumbnail Image
    Evolution of a clade of Acinetobacter baumannii global clone 1, lineage 1 via acquisition of carbapenem- and aminoglycoside-resistance genes and dispersion of ISAba1
    Hamidian, M ; Hawkey, J ; Wick, R ; Holt, KE ; Hall, RM (MICROBIOLOGY SOC, 2019-01)
    Resistance to carbapenem and aminoglycoside antibiotics is a critical problem in Acinetobacter baumannii, particularly when genes conferring resistance are acquired by multiply or extensively resistant members of successful globally distributed clonal complexes, such as global clone 1 (GC1) . Here, we investigate the evolution of an expanding clade of lineage 1 of the GC1 complex via repeated acquisition of carbapenem- and aminoglycoside-resistance genes. Lineage 1 arose in the late 1970s and the Tn6168/OCL3 clade arose in the late 1990s from an ancestor that had already acquired resistance to third-generation cephalosporins and fluoroquinolones. Between 2000 and 2002, two distinct subclades have emerged, and they are distinguishable via the presence of an integrated phage genome in subclade 1 and AbaR4 (carrying the oxa23 carbapenem-resistance gene in Tn2006) at a specific chromosomal location in subclade 2. Part or all of the original resistance gene cluster in the chromosomally located AbaR3 has been lost from some isolates, but plasmids carrying alternate resistance genes have been gained. In one group in subclade 2, the chromosomally located AbGRI3, carrying the armA aminoglycoside-resistance gene, has been acquired from a GC2 isolate and incorporated via homologous recombination. ISAba1 entered the common ancestor of this clade as part of the cephalosporin-resistance transposon Tn6168 and has dispersed differently in each subclade. Members of subclade 1 share an ISAba1 in one specific position in the chromosome and in subclade 2 two different ISAba1 locations are shared. Further shared ISAba1 locations distinguish further divisions, potentially providing simple markers for epidemiological studies.
  • Item
    Thumbnail Image
    Emergence and rapid global dissemination of CTX-M-15-associated Klebsiella pneumoniae strain ST307
    Wyres, KL ; Hawkey, J ; Hetland, MAK ; Fostervold, A ; Wick, RR ; Judd, LM ; Hamidian, M ; Howden, BP ; Lohr, IH ; Holt, KE (OXFORD UNIV PRESS, 2019-03)
    OBJECTIVES: Recent reports indicate the emergence of a new carbapenemase-producing Klebsiella pneumoniae clone, ST307. We sought to better understand the global epidemiology and evolution of this clone and evaluate its association with antimicrobial resistance (AMR) genes. METHODS: We collated information from the literature and public databases and performed a comparative analysis of 95 ST307 genomes (including 37 that were newly sequenced). RESULTS: We show that ST307 emerged in the mid-1990s (nearly 20 years prior to its first report), is already globally distributed and is intimately associated with a conserved plasmid harbouring the blaCTX-M-15 ESBL gene and several other AMR determinants. CONCLUSIONS: Our findings support the need for enhanced surveillance of this widespread ESBL clone in which carbapenem resistance has occasionally emerged.
  • Item
    Thumbnail Image
    Clinical and laboratory-induced colistin-resistance mechanisms in Acinetobacter baumannii
    Boinett, CJ ; Cain, AK ; Hawkey, J ; Nhu, TDH ; Nhu, NTK ; Duy, PT ; Dordel, J ; Campbell, J ; Nguyen, PHL ; Mayho, M ; Langridge, GC ; Hadfield, J ; Nguyen, VVC ; Thwaites, GE ; Parkhill, J ; Thomson, NR ; Holt, KE ; Baker, S (MICROBIOLOGY SOC, 2019-02)
    The increasing incidence and emergence of multi-drug resistant (MDR) Acinetobacter baumannii has become a major global health concern. Colistin is a historic antimicrobial that has become commonly used as a treatment for MDR A. baumannii infections. The increase in colistin usage has been mirrored by an increase in colistin resistance. We aimed to identify the mechanisms associated with colistin resistance in A. baumannii using multiple high-throughput-sequencing technologies, including transposon-directed insertion site sequencing (TraDIS), RNA sequencing (RNAseq) and whole-genome sequencing (WGS) to investigate the genotypic changes of colistin resistance in A. baumannii. Using TraDIS, we found that genes involved in drug efflux (adeIJK), and phospholipid (mlaC, mlaF and mlaD) and lipooligosaccharide synthesis (lpxC and lpsO) were required for survival in sub-inhibitory concentrations of colistin. Transcriptomic (RNAseq) analysis revealed that expression of genes encoding efflux proteins (adeI, adeC, emrB, mexB and macAB) was enhanced in in vitro generated colistin-resistant strains. WGS of these organisms identified disruptions in genes involved in lipid A (lpxC) and phospholipid synthesis (mlaA), and in the baeS/R two-component system (TCS). We additionally found that mutations in the pmrB TCS genes were the primary colistin-resistance-associated mechanisms in three Vietnamese clinical colistin-resistant A. baumannii strains. Our results outline the entire range of mechanisms employed in A. baumannii for resistance against colistin, including drug extrusion and the loss of lipid A moieties by gene disruption or modification.
  • Item
    Thumbnail Image
    Z/I1 Hybrid Virulence Plasmids Carrying Antimicrobial Resistance genes in S. Typhimurium from Australian Food Animal Production
    Wyrsch, ER ; Hawkey, J ; Judd, LM ; Haites, R ; Holt, KE ; Djordjevic, SP ; Billman-Jacobe, H (MDPI, 2019-09)
    Knowledge of mobile genetic elements that capture and disseminate antimicrobial resistance genes between diverse environments, particularly across human-animal boundaries, is key to understanding the role anthropogenic activities have in the evolution of antimicrobial resistance. Plasmids that circulate within the Enterobacteriaceae and the Proteobacteria more broadly are well placed to acquire resistance genes sourced from separate niche environments and provide a platform for smaller mobile elements such as IS26 to assemble these genes into large, complex genomic structures. Here, we characterised two atypical Z/I1 hybrid plasmids, pSTM32-108 and pSTM37-118, hosting antimicrobial resistance and virulence associated genes within endemic pathogen Salmonella enterica serovar Typhimurium 1,4,[5],12:i:-, sourced from Australian swine production facilities during 2013. We showed that the plasmids found in S. Typhimurium 1,4,[5],12:i:- are close relatives of two plasmids identified from Escherichia coli of human and bovine origin in Australia circa 1998. The older plasmids, pO26-CRL125 and pO111-CRL115, encoded a putative serine protease autotransporter and were host to a complex resistance region composed of a hybrid Tn21-Tn1721 mercury resistance transposon and composite IS26 transposon Tn6026. This gave a broad antimicrobial resistance profile keyed towards first generation antimicrobials used in Australian agriculture but also included a class 1 integron hosting the trimethoprim resistance gene dfrA5. Genes encoding resistance to ampicillin, trimethoprim, sulphonamides, streptomycin, aminoglycosides, tetracyclines and mercury were a feature of these plasmids. Phylogenetic analyses showed very little genetic drift in the sequences of these plasmids over the past 15 years; however, some alterations within the complex resistance regions present on each plasmid have led to the loss of various resistance genes, presumably as a result of the activity of IS26. These alterations may reflect the specific selective pressures placed on the host strains over time. Our studies suggest that these plasmids and variants of them are endemic in Australian food production systems.
  • Item
    Thumbnail Image
    Global phylogenomics of multidrug-resistant Salmonella enterica serotype Kentucky ST198
    Hawkey, J ; Le Hello, S ; Doublet, B ; Granier, SA ; Hendriksen, RS ; Fricke, WF ; Ceyssens, P-J ; Gomart, C ; Billman-Jacobe, H ; Holt, KE ; Weill, F-X (MICROBIOLOGY SOC, 2019-07)
    Salmonella enterica serotype Kentucky can be a common causative agent of salmonellosis, usually associated with consumption of contaminated poultry. Antimicrobial resistance (AMR) to multiple drugs, including ciprofloxacin, is an emerging problem within this serotype. We used whole-genome sequencing (WGS) to investigate the phylogenetic structure and AMR content of 121 S.enterica serotype Kentucky sequence type 198 isolates from five continents. Population structure was inferred using phylogenomic analysis and whole genomes were compared to investigate changes in gene content, with a focus on acquired AMR genes. Our analysis showed that multidrug-resistant (MDR) S.enterica serotype Kentucky isolates belonged to a single lineage, which we estimate emerged circa 1989 following the acquisition of the AMR-associated Salmonella genomic island (SGI) 1 (variant SGI1-K) conferring resistance to ampicillin, streptomycin, gentamicin, sulfamethoxazole and tetracycline. Phylogeographical analysis indicates this clone emerged in Egypt before disseminating into Northern, Southern and Western Africa, then to the Middle East, Asia and the European Union. The MDR clone has since accumulated various substitution mutations in the quinolone-resistance-determining regions (QRDRs) of DNA gyrase (gyrA) and DNA topoisomerase IV (parC), such that most strains carry three QRDR mutations which together confer resistance to ciprofloxacin. The majority of AMR genes in the S. enterica serotype Kentucky genomes were carried either on plasmids or SGI structures. Remarkably, each genome of the MDR clone carried a different SGI1-K derivative structure; this variation could be attributed to IS26-mediated insertions and deletions, which appear to have hampered previous attempts to trace the clone's evolution using sub-WGS resolution approaches. Several different AMR plasmids were also identified, encoding resistance to chloramphenicol, third-generation cephalosporins, carbapenems and/or azithromycin. These results indicate that most MDR S. enterica serotype Kentucky circulating globally result from the clonal expansion of a single lineage that acquired chromosomal AMR genes 30 years ago, and has continued to diversify and accumulate additional resistances to last-line oral antimicrobials. This article contains data hosted by Microreact.
  • Item
    Thumbnail Image
    Evolution of carbapenem resistance in Acinetobacter baumannii during a prolonged infection
    Hawkey, J ; Ascher, DB ; Judd, LM ; Wick, RR ; Kostoulias, X ; Cleland, H ; Spelman, DW ; Padiglione, A ; Peleg, AY ; Holt, KE (MICROBIOLOGY SOC, 2018-03)
    Acinetobacter baumannii is a common causative agent of hospital-acquired infections and a leading cause of infection in burns patients. Carbapenem-resistant A. baumannii is considered a major public-health threat and has been identified by the World Health Organization as the top priority organism requiring new antimicrobials. The most common mechanism for carbapenem resistance in A. baumannii is via horizontal acquisition of carbapenemase genes. In this study, we sampled 20 A. baumannii isolates from a patient with extensive burns, and characterized the evolution of carbapenem resistance over a 45 day period via Illumina and Oxford Nanopore sequencing. All isolates were multidrug resistant, carrying two genomic islands that harboured several antibiotic-resistance genes. Most isolates were genetically identical and represented a single founder genotype. We identified three novel non-synonymous substitutions associated with meropenem resistance: F136L and G288S in AdeB (part of the AdeABC efflux pump) associated with an increase in meropenem MIC to ≥8 µg ml-1; and A515V in FtsI (PBP3, a penicillin-binding protein) associated with a further increase in MIC to 32 µg ml-1. Structural modelling of AdeB and FtsI showed that these mutations affected their drug-binding sites and revealed mechanisms for meropenem resistance. Notably, one of the adeB mutations arose prior to meropenem therapy but following ciprofloxacin therapy, suggesting exposure to one drug whose resistance is mediated by the efflux pump can induce collateral resistance to other drugs to which the bacterium has not yet been exposed.