Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    WGS Analysis and Interpretation in Clinical and Public Health Microbiology Laboratories: What Are the Requirements and How Do Existing Tools Compare?
    Wyres, KL ; Conway, TC ; Garg, S ; Queiroz, C ; Reumann, M ; Holt, K ; Rusu, LI (MDPI, 2014-06-01)
    Recent advances in DNA sequencing technologies have the potential to transform the field of clinical and public health microbiology, and in the last few years numerous case studies have demonstrated successful applications in this context. Among other considerations, a lack of user-friendly data analysis and interpretation tools has been frequently cited as a major barrier to routine use of these techniques. Here we consider the requirements of microbiology laboratories for the analysis, clinical interpretation and management of bacterial whole-genome sequence (WGS) data. Then we discuss relevant, existing WGS analysis tools. We highlight many essential and useful features that are represented among existing tools, but find that no single tool fulfils all of the necessary requirements. We conclude that to fully realise the potential of WGS analyses for clinical and public health microbiology laboratories of all scales, we will need to develop tools specifically with the needs of these laboratories in mind.
  • Item
    Thumbnail Image
    A platform for leveraging next generation sequencing for routine microbiology and public health use
    Rusu, LI ; Wyres, KL ; Reumann, M ; Queiroz, C ; Bojovschi, A ; Conway, T ; Garg, S ; Edwards, DJ ; Hogg, G ; Holt, KE (BIOMED CENTRAL LTD, 2015-12-01)
    Even with the advent of next-generation sequencing (NGS) technologies which have revolutionised the field of bacterial genomics in recent years, a major barrier still exists to the implementation of NGS for routine microbiological use (in public health and clinical microbiology laboratories). Such routine use would make a big difference to investigations of pathogen transmission and prevention/control of (sometimes lethal) infections. The inherent complexity and high frequency of data analyses on very large sets of bacterial DNA sequence data, the ability to ensure data provenance and automatically track and log all analyses for audit purposes, the need for quick and accurate results, together with an essential user-friendly interface for regular non-technical laboratory staff, are all critical requirements for routine use in a public health setting. There are currently no systems to answer positively to all these requirements, in an integrated manner. In this paper, we describe a system for sequence analysis and interpretation that is highly automated and tackles the issues raised earlier, and that is designed for use in diagnostic laboratories by healthcare workers with no specialist bioinformatics knowledge.
  • Item
    Thumbnail Image
    Short read sequence typing (SRST): multi-locus sequence types from short reads
    Inouye, M ; Conway, TC ; Zobel, J ; Holt, KE (BMC, 2012-07-24)
    BACKGROUND: Multi-locus sequence typing (MLST) has become the gold standard for population analyses of bacterial pathogens. This method focuses on the sequences of a small number of loci (usually seven) to divide the population and is simple, robust and facilitates comparison of results between laboratories and over time. Over the last decade, researchers and population health specialists have invested substantial effort in building up public MLST databases for nearly 100 different bacterial species, and these databases contain a wealth of important information linked to MLST sequence types such as time and place of isolation, host or niche, serotype and even clinical or drug resistance profiles. Recent advances in sequencing technology mean it is increasingly feasible to perform bacterial population analysis at the whole genome level. This offers massive gains in resolving power and genetic profiling compared to MLST, and will eventually replace MLST for bacterial typing and population analysis. However given the wealth of data currently available in MLST databases, it is crucial to maintain backwards compatibility with MLST schemes so that new genome analyses can be understood in their proper historical context. RESULTS: We present a software tool, SRST, for quick and accurate retrieval of sequence types from short read sets, using inputs easily downloaded from public databases. SRST uses read mapping and an allele assignment score incorporating sequence coverage and variability, to determine the most likely allele at each MLST locus. Analysis of over 3,500 loci in more than 500 publicly accessible Illumina read sets showed SRST to be highly accurate at allele assignment. SRST output is compatible with common analysis tools such as eBURST, Clonal Frame or PhyloViz, allowing easy comparison between novel genome data and MLST data. Alignment, fastq and pileup files can also be generated for novel alleles. CONCLUSIONS: SRST is a novel software tool for accurate assignment of sequence types using short read data. Several uses for the tool are demonstrated, including quality control for high-throughput sequencing projects, plasmid MLST and analysis of genomic data during outbreak investigation. SRST is open-source, requires Python, BWA and SamTools, and is available from http://srst.sourceforge.net.