Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    Gene dysregulation is restored in the Parkinson's disease MPTP neurotoxic mice model upon treatment of the therapeutic drug Cu-II(atsm)
    Cheng, L ; Quek, CYJ ; Hung, LW ; Sharples, RA ; Sherratt, NA ; Barnham, KJ ; Hill, AF (NATURE PUBLISHING GROUP, 2016-03-01)
    The administration of MPTP selectively targets the dopaminergic system resulting in Parkinsonism-like symptoms and is commonly used as a mice model of Parkinson's disease. We previously demonstrated that the neuroprotective compound Cu(II)(atsm) rescues nigral cell loss and improves dopamine metabolism in the MPTP model. The mechanism of action of Cu(II)(atsm) needs to be further defined to understand how the compound promotes neuronal survival. Whole genome transcriptomic profiling has become a popular method to examine the relationship between gene expression and function. Substantia nigra samples from MPTP-lesioned mice were evaluated using whole transcriptome sequencing to investigate the genes altered upon Cu(II)(atsm) treatment. We identified 143 genes affected by MPTP lesioning that are associated with biological processes related to brain and cognitive development, dopamine synthesis and perturbed synaptic neurotransmission. Upon Cu(II)(atsm) treatment, the expression of 40 genes involved in promoting dopamine synthesis, calcium signaling and synaptic plasticity were restored which were validated by qRT-PCR. The study provides the first detailed whole transcriptomic analysis of pathways involved in MPTP-induced Parkinsonism. In addition, we identify key therapeutic pathways targeted by a potentially new class of neuroprotective agents which may provide therapeutic benefits for other neurodegenerative disorders.
  • Item
    Thumbnail Image
    A rigorous method to enrich for exosomes from brain tissue
    Vella, LJ ; Scicluna, BJ ; Cheng, L ; Bawden, EG ; Masters, CL ; Ang, C-S ; Willamson, N ; McLean, C ; Barnham, KJ ; Hill, AF (TAYLOR & FRANCIS LTD, 2017-07-26)
    Extracellular vesicles, including exosomes, are released by all cells, including those of the nervous system. Capable of delivering lipid, protein and nucleic acids to both nearby and distal cells, exosomes have been hypothesized to play a role in progression of many diseases of the nervous system. To date, most analyses on the role of these vesicles in the healthy and diseased state have relied on studying vesicles from in vitro sources, such as conditioned cell culture media, or body fluids. Here we have taken a critical approach to the enrichment and characterization of exosomes from human frontal cortex. This method maintains the integrity of the vesicles and their cargo, and comprehensive proteomic and genomic characterization confirms the legitimacy of the resulting extracellular vesicles as endosome-derived exosomes. This method will enable neuroscientists to acquire more detailed information about exosomes in the brain and explore the role(s) this form of intercellular communication and unique source of lipid, protein and RNA has in healthy brain function and pathogenic conditions. Furthermore, this method may have important utility in the isolation of exosomes from other tissues.
  • Item
    Thumbnail Image
    The hypoxia imaging agent Cu-II(atsm) is neuroprotective and improves motor and cognitive functions in multiple animal models of Parkinson's disease
    Hung, LW ; Villemagne, VL ; Cheng, L ; Sherratt, NA ; Ayton, S ; White, AR ; Crouch, PJ ; Lim, S ; Leong, SL ; Wilkins, S ; George, J ; Roberts, BR ; Pham, CLL ; Liu, X ; Chiu, FCK ; Shackleford, DM ; Powell, AK ; Masters, CL ; Bush, AI ; O'Keefe, G ; Culvenor, JG ; Cappai, R ; Cherny, RA ; Donnelly, PS ; Hill, AF ; Finkelstein, DI ; Barnham, KJ (ROCKEFELLER UNIV PRESS, 2012-04-09)
    Parkinson's disease (PD) is a progressive, chronic disease characterized by dyskinesia, rigidity, instability, and tremors. The disease is defined by the presence of Lewy bodies, which primarily consist of aggregated α-synuclein protein, and is accompanied by the loss of monoaminergic neurons. Current therapeutic strategies only give symptomatic relief of motor impairment and do not address the underlying neurodegeneration. Hence, we have identified Cu(II)(atsm) as a potential therapeutic for PD. Drug administration to four different animal models of PD resulted in improved motor and cognition function, rescued nigral cell loss, and improved dopamine metabolism. In vitro, this compound is able to inhibit the effects of peroxynitrite-driven toxicity, including the formation of nitrated α-synuclein oligomers. Our results show that Cu(II)(atsm) is effective in reversing parkinsonian defects in animal models and has the potential to be a successful treatment of PD.
  • Item
    Thumbnail Image
    Microwave Synthesis of Prion Protein Fragments up to 111 Amino Acids in Length Generates Biologically Active Peptides
    Karas, JA ; Boland, M ; Haigh, C ; Johanssen, V ; Hill, A ; Barnham, K ; Collins, S ; Scanlon, D (Springer Verlag, 2012)
    Misfolded conformers of the prion protein are aetiologically implicated in neurodegenerative conditions termed prion diseases (also known as transmissible spongiform encephalopathies). Two constitutively expressed N-terminal peptides corresponding to human residues 23–90 and 23–111 are thought to serve normal physiological roles related to neuronal protection with membrane binding possibly playing a part in their mechanism of action. These peptides, along with several derivatives up to 111 residues in length, have been produced by microwave assisted peptide synthesis. HPLC and MS characterisation showed that the peptides were manufactured in good yields at high purity. Peptides were assayed by fluorescence spectroscopy for synthetic lipid-membrane binding activity and by dichlorodihydrofluorescein diacetate assay for the amelioration of reactive oxygen species production. Results of these assays were similar to those reported for the wild type recombinant PrP, demonstrating that these synthetic peptides are useful for biological and chemical assays of PrP activity. Further, the longest peptide 1–111 was dimerised via a single internal cystine residue with good yield. The high yields and low purification burden of the microwave assisted synthesis method lends itself to the production of difficult to produce peptides for such studies.
  • Item
    Thumbnail Image
    Ablation of tau causes an olfactory deficit in a murine model of Parkinson's disease
    Beauchamp, LC ; Chan, J ; Hung, LW ; Padman, BS ; Vella, LJ ; Liu, XM ; Coleman, B ; Bush, AI ; Lazarou, M ; Hill, AF ; Jacobson, L ; Barnham, KJ (BMC, 2018-07-05)
    Parkinson's disease is diagnosed upon the presentation of motor symptoms, resulting from substantial degeneration of dopaminergic neurons in the midbrain. Prior to diagnosis, there is a lengthy prodromal stage in which non-motor symptoms, including olfactory deficits (hyposmia), develop. There is limited information about non-motor impairments and there is a need for directed research into these early pathogenic cellular pathways that precede extensive dopaminergic death in the midbrain. The protein tau has been identified as a genetic risk factor in the development of sporadic PD. Tau knockout mice have been reported as an age-dependent model of PD, and this study has demonstrated that they develop motor deficits at 15-months-old. We have shown that at 7-month-old tau knockout mice present with an overt hyposmic phenotype. This olfactory deficit correlates with an accumulation of α-synuclein, as well as autophagic impairment, in the olfactory bulb. This pathological feature becomes apparent in the striatum and substantia nigra of 15-month-old tau knockout mice, suggesting the potential for a spread of disease. Initial primary cell culture experiments have demonstrated that ablation of tau results in the release of α-synuclein enriched exosomes, providing a potential mechanism for disease spread. These alterations in α-synuclein level as well as a marked autophagy impairment in the tau knockout primary cells recapitulate results seen in the animal model. These data implicate a pathological role for tau in early Parkinson's disease.
  • Item
    No Preview Available
    C-terminal peptides modelling constitutive PrPC processing demonstrate ameliorated toxicity predisposition consequent to alpha-cleavage
    Johanssen, VA ; Johanssen, T ; Masters, CL ; Hill, AF ; Barnham, KJ ; Collins, SJ (PORTLAND PRESS LTD, 2014-04-01)
    Misfolding of PrPC (cellular prion protein) to β-strand-rich conformations constitutes a key event in prion disease pathogenesis. PrPC can undergo either of two constitutive endoproteolytic events known as α- and β-cleavage, yielding C-terminal fragments known as C1 and C2 respectively. It is unclear whether C-terminal fragments generated through α- and β-cleavage, especially C2, influence pathogenesis directly. Consequently, we compared the biophysical properties and neurotoxicity of recombinant human PrP fragments recapitulating α- and β-cleavage, namely huPrP-(112-231) (equating to C1) and huPrP-(90-231) (equating to C2). Under conditions we employed, huPrP-(112-231) could not be induced to fold into a β-stranded isoform and neurotoxicity was not a feature for monomeric or multimeric assemblies. In contrast, huPrP-(90-231) easily adopted a β-strand conformation, demonstrated considerable thermostability and was toxic to neurons. Synthetic PrP peptides modelled on α- and β-cleavage of the unique Y145STOP (Tyr145→stop) mutant prion protein corroborated the differential toxicity observed for recombinant huPrP-(112-231) and huPrP-(90-231) and suggested that the persistence of soluble oligomeric β-strand-rich conformers was required for significant neurotoxicity. Our results additionally indicate that α- and β-cleavage of PrPC generate biophysically and biologically non-equivalent C-terminal fragments and that C1 generated through α-cleavage appears to be pathogenesis-averse.
  • Item
    No Preview Available
    Pathogenic Mutations within the Hydrophobic Domain of the Prion Protein Lead to the Formation of Protease-Sensitive Prion Species with Increased Lethality
    Coleman, BM ; Harrison, CF ; Guo, B ; Masters, CL ; Barnham, KJ ; Lawson, VA ; Hill, AF ; Caughey, BW (AMER SOC MICROBIOLOGY, 2014-03-01)
    UNLABELLED: Prion diseases are a group of fatal and incurable neurodegenerative diseases affecting both humans and animals. The principal mechanism of these diseases involves the misfolding the host-encoded cellular prion protein, PrP(C), into the disease-associated isoform, PrP(Sc). Familial forms of human prion disease include those associated with the mutations G114V and A117V, which lie in the hydrophobic domain of PrP. Here we have studied the murine homologues (G113V and A116V) of these mutations using cell-based and animal models of prion infection. Under normal circumstances, the mutant forms of PrP(C) share similar processing, cellular localization, and physicochemical properties with wild-type mouse PrP (MoPrP). However, upon exposure of susceptible cell lines expressing these mutants to infectious prions, very low levels of protease-resistant aggregated PrP(Sc) are formed. Subsequent mouse bioassay revealed high levels of infectivity present in these cells. Thus, these mutations appear to limit the formation of aggregated PrP(Sc), giving rise to the accumulation of a relatively soluble, protease sensitive, prion species that is highly neurotoxic. Given that these mutations lie next to the glycine-rich region of PrP that can abrogate prion infection, these findings provide further support for small, protease-sensitive prion species having a significant role in the progression of prion disease and that the hydrophobic domain is an important determinant of PrP conversion. IMPORTANCE: Prion diseases are transmissible neurodegenerative diseases associated with an infectious agent called a prion. Prions are comprised of an abnormally folded form of the prion protein (PrP) that is normally resistant to enzymes called proteases. In humans, prion disease can occur in individuals who inherited mutations in the prion protein gene. Here we have studied the effects of two of these mutations and show that they influence the properties of the prions that can be formed. We show that the mutants make highly infectious prions that are more sensitive to protease treatment. This study highlights a certain region of the prion protein as being involved in this effect and demonstrates that prions are not always resistant to protease treatment.
  • Item
    Thumbnail Image
    PBT2 inhibits glutamate-induced excitotoxicity in neurons through metal-mediated preconditioning
    Johanssen, T ; Suphantarida, N ; Donnelly, PS ; Liu, XM ; Petrou, S ; Hill, AF ; Barnham, KJ (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2015-09-01)
    Excitotoxicity is the pathological process by which neuronal death occurs as a result of excessive stimulation of receptors at the excitatory synapse such as the NMDA receptor (NMDAR). Excitotoxicity has been implicated in the acute neurological damage from ischemia and traumatic brain injury and in the chronic neurodegeneration in Alzheimer's disease (AD) and Huntington's disease (HD). As a result NMDAR antagonists have become an attractive therapeutic strategy for the potential treatment of multiple neurodegenerative diseases. However NMDAR signaling is dichotomous in nature, with excessive increases in neuronal intracellular calcium through excessive NMDAR activity being lethal but moderate increases to intracellular calcium levels during normal synaptic function providing neuroprotection. Subsequently indiscriminant inhibition of this receptor is best avoided as was concluded from previous clinical trials of NMDAR antagonists. We show that the metal chaperone, PBT2, currently in clinical trials for HD, is able to protect against glutamate-induced excitotoxicity mediated through NMDARs. This was achieved by PBT2 inducing Zn(2+)-dependent increases in intracellular Ca(2+) levels resulting in preconditioning of neurons and inhibition of Ca(2+)-induced neurotoxic signaling cascade involving calpain-activated cleavage of calcineurin. Our study demonstrates that modulating intracellular Ca(2+) levels by a zinc ionophore is a valid therapeutic strategy to protect against the effects of excitotoxicity thought to underlie both acute and chronic neurodegenerative diseases.