Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    Unicycler: resolving bacterial genome assemblies from short and long sequencing reads
    Wick, R ; Judd, L ; Gorrie, C ; Holt, K ( 2016-12-22)
    The Illumina DNA sequencing platform generates accurate but short reads, which can be used to produce accurate but fragmented genome assemblies. Pacific Biosciences and Oxford Nanopore Technologies DNA sequencing platforms generate long reads that can produce more complete genome assemblies, but the sequencing is more expensive and error prone. There is significant interest in combining data from these complementary sequencing technologies to generate more accurate “hybrid” assemblies. However, few tools exist that truly leverage the benefits of both types of data, namely the accuracy of short reads and the structural resolving power of long reads. Here we present Unicycler, a new tool for assembling bacterial genomes from a combination of short and long reads, which produces assemblies that are accurate, complete and cost-effective. Unicycler builds an initial assembly graph from short reads using the de novo assembler SPAdes and then simplifies the graph using information from short and long reads. Unicycler utilises a novel semi-global aligner, which is used to align long reads to the assembly graph. Tests on both synthetic and real reads show Unicycler can assemble larger contigs with fewer misassemblies than other hybrid assemblers, even when long read depth and accuracy are low. Unicycler is open source (GPLv3) and available at github.com/rrwick/Unicycler .
  • Item
    Thumbnail Image
    Antimicrobial-Resistant Klebsiella pneumoniae Carriage and Infection in Specialized Geriatric Care Wards Linked to Acquisition in the Referring Hospital
    Gorrie, CL ; Mirceta, M ; Wick, RR ; Judd, LM ; Wyres, KL ; Thomson, NR ; Strugnell, RA ; Pratt, NF ; Garlick, JS ; Watson, KM ; Hunter, PC ; McGloughlin, SA ; Spelman, DW ; Jenney, AWJ ; Holt, KE (OXFORD UNIV PRESS INC, 2018-07-15)
    BACKGROUND: Klebsiella pneumoniae is a leading cause of extended-spectrum β-lactamase (ESBL)-producing hospital-associated infections, for which elderly patients are at increased risk. METHODS: We conducted a 1-year prospective cohort study, in which a third of patients admitted to 2 geriatric wards in a specialized hospital were recruited and screened for carriage of K. pneumoniae by microbiological culture. Clinical isolates were monitored via the hospital laboratory. Colonizing and clinical isolates were subjected to whole-genome sequencing and antimicrobial susceptibility testing. RESULTS: K. pneumoniae throat carriage prevalence was 4.1%, rectal carriage 10.8%, and ESBL carriage 1.7%, and the incidence of K. pneumoniae infection was 1.2%. The isolates were diverse, and most patients were colonized or infected with a unique phylogenetic lineage, with no evidence of transmission in the wards. ESBL strains carried blaCTX-M-15 and belonged to clones associated with hospital-acquired ESBL infections in other countries (sequence type [ST] 29, ST323, and ST340). One also carried the carbapenemase blaIMP-26. Genomic and epidemiological data provided evidence that ESBL strains were acquired in the referring hospital. Nanopore sequencing also identified strain-to-strain transmission of a blaCTX-M-15 FIBK/FIIK plasmid in the referring hospital. CONCLUSIONS: The data suggest the major source of K. pneumoniae was the patient's own gut microbiome, but ESBL strains were acquired in the referring hospital. This highlights the importance of the wider hospital network to understanding K. pneumoniae risk and infection prevention. Rectal screening for ESBL organisms on admission to geriatric wards could help inform patient management and infection control in such facilities.
  • Item
    Thumbnail Image
    Gastrointestinal Carriage Is a Major Reservoir of Klebsiella pneumoniae Infection in Intensive Care Patients
    Gorrie, CL ; Mirceta, M ; Wick, RR ; Edwards, DJ ; Thomson, NR ; Strugnell, RA ; Pratt, NF ; Garlick, JS ; Watson, KM ; Pilcher, DV ; McGloughlin, SA ; Spelman, DW ; Jenney, AWJ ; Holt, KE (OXFORD UNIV PRESS INC, 2017-07-15)
    BACKGROUND: Klebsiella pneumoniae is an opportunistic pathogen and leading cause of hospital-associated infections. Intensive care unit (ICU) patients are particularly at risk. Klebsiella pneumoniae is part of the healthy human microbiome, providing a potential reservoir for infection. However, the frequency of gut colonization and its contribution to infections are not well characterized. METHODS: We conducted a 1-year prospective cohort study in which 498 ICU patients were screened for rectal and throat carriage of K. pneumoniae shortly after admission. Klebsiella pneumoniae isolated from screening swabs and clinical diagnostic samples were characterized using whole genome sequencing and combined with epidemiological data to identify likely transmission events. RESULTS: Klebsiella pneumoniae carriage frequencies were estimated at 6% (95% confidence interval [CI], 3%-8%) among ICU patients admitted direct from the community, and 19% (95% CI, 14%-51%) among those with recent healthcare contact. Gut colonization on admission was significantly associated with subsequent infection (infection risk 16% vs 3%, odds ratio [OR] = 6.9, P < .001), and genome data indicated matching carriage and infection isolates in 80% of isolate pairs. Five likely transmission chains were identified, responsible for 12% of K. pneumoniae infections in ICU. In sum, 49% of K. pneumoniae infections were caused by the patients' own unique strain, and 48% of screened patients with infections were positive for prior colonization. CONCLUSIONS: These data confirm K. pneumoniae colonization is a significant risk factor for infection in ICU, and indicate ~50% of K. pneumoniae infections result from patients' own microbiota. Screening for colonization on admission could limit risk of infection in the colonized patient and others.
  • Item
    Thumbnail Image
    Distinct evolutionary dynamics of horizontal gene transfer in drug resistant and virulent clones of Klebsiella pneumoniae
    Wyres, K ; Wick, R ; Judd, L ; Froumine, R ; Tokolyi, A ; Gorrie, C ; Lam, M ; Duchene, S ; Jenney, A ; Holt, K ; Hughes, D (Public Library of Science (PLoS), 2018-09-12)
    Klebsiella pneumoniae (Kp) has emerged as an important cause of two distinct public health threats: multi-drug resistant (MDR) healthcare-associated infections and community-acquired invasive infections, particularly pyogenic liver abscess. The majority of MDR hospital outbreaks are caused by a subset of Kp clones with a high prevalence of acquired antimicrobial resistance (AMR) genes, while the majority of community-acquired invasive infections are caused by hypervirulent clones that rarely harbour acquired AMR genes but have high prevalence of key virulence loci. Worryingly, the last few years have seen increasing reports of convergence of MDR and the key virulence genes within individual Kp strains, but it is not yet clear whether these represent a transient phenomenon or a significant ongoing threat. Here we perform comparative genomic analyses for 28 distinct Kp clones, including 6 hypervirulent and 8 MDR, to better understand their evolutionary histories and the risks of convergence. We show that MDR clones are highly diverse with frequent chromosomal recombination and gene content variability that far exceeds that of the hypervirulent clones. Consequently, we predict a much greater risk of virulence gene acquisition by MDR Kp clones than of resistance gene acquisition by hypervirulent clones.
  • Item
    Thumbnail Image
    Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads
    Wick, RR ; Judd, LM ; Gorrie, CL ; Holt, KE ; Phillippy, AM (PUBLIC LIBRARY SCIENCE, 2017-06)
    The Illumina DNA sequencing platform generates accurate but short reads, which can be used to produce accurate but fragmented genome assemblies. Pacific Biosciences and Oxford Nanopore Technologies DNA sequencing platforms generate long reads that can produce complete genome assemblies, but the sequencing is more expensive and error-prone. There is significant interest in combining data from these complementary sequencing technologies to generate more accurate "hybrid" assemblies. However, few tools exist that truly leverage the benefits of both types of data, namely the accuracy of short reads and the structural resolving power of long reads. Here we present Unicycler, a new tool for assembling bacterial genomes from a combination of short and long reads, which produces assemblies that are accurate, complete and cost-effective. Unicycler builds an initial assembly graph from short reads using the de novo assembler SPAdes and then simplifies the graph using information from short and long reads. Unicycler uses a novel semi-global aligner to align long reads to the assembly graph. Tests on both synthetic and real reads show Unicycler can assemble larger contigs with fewer misassemblies than other hybrid assemblers, even when long-read depth and accuracy are low. Unicycler is open source (GPLv3) and available at github.com/rrwick/Unicycler.
  • Item
    Thumbnail Image
    Identification of Klebsiella capsule synthesis loci from whole genome data
    Wyres, KL ; Wick, RR ; Gorrie, C ; Jenney, A ; Follador, R ; Thomson, NR ; Holt, KE (MICROBIOLOGY SOC, 2016-12)
    Klebsiella pneumoniae is a growing cause of healthcare-associated infections for which multi-drug resistance is a concern. Its polysaccharide capsule is a major virulence determinant and epidemiological marker. However, little is known about capsule epidemiology since serological typing is not widely accessible and many isolates are serologically non-typeable. Molecular typing techniques provide useful insights, but existing methods fail to take full advantage of the information in whole genome sequences. We investigated the diversity of the capsule synthesis loci (K-loci) among 2503 K. pneumoniae genomes. We incorporated analyses of full-length K-locus nucleotide sequences and also clustered protein-encoding sequences to identify, annotate and compare K-locus structures. We propose a standardized nomenclature for K-loci and present a curated reference database. A total of 134 distinct K-loci were identified, including 31 novel types. Comparative analyses indicated 508 unique protein-encoding gene clusters that appear to reassort via homologous recombination. Extensive intra- and inter-locus nucleotide diversity was detected among the wzi and wzc genes, indicating that current molecular typing schemes based on these genes are inadequate. As a solution, we introduce Kaptive, a novel software tool that automates the process of identifying K-loci based on full locus information extracted from whole genome sequences (https://github.com/katholt/Kaptive). This work highlights the extensive diversity of Klebsiella K-loci and the proteins that they encode. The nomenclature, reference database and novel typing method presented here will become essential resources for genomic surveillance and epidemiological investigations of this pathogen.
  • Item
    Thumbnail Image
    Genetic diversity, mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in Klebsiella pneumoniae populations
    Lam, MMC ; Wick, RR ; Wyres, KL ; Gorrie, CL ; Judd, LM ; Jenney, AWJ ; Brisse, S ; Holt, KE (MICROBIOLOGY SOC, 2018-09)
    Mobile genetic elements (MGEs) that frequently transfer within and between bacterial species play a critical role in bacterial evolution, and often carry key accessory genes that associate with a bacteria's ability to cause disease. MGEs carrying antimicrobial resistance (AMR) and/or virulence determinants are common in the opportunistic pathogen Klebsiella pneumoniae, which is a leading cause of highly drug-resistant infections in hospitals. Well-characterised virulence determinants in K. pneumoniae include the polyketide synthesis loci ybt and clb (also known as pks), encoding the iron-scavenging siderophore yersiniabactin and genotoxin colibactin, respectively. These loci are located within an MGE called ICEKp, which is the most common virulence-associated MGE of K. pneumoniae, providing a mechanism for these virulence factors to spread within the population. Here we apply population genomics to investigate the prevalence, evolution and mobility of ybt and clb in K. pneumoniae populations through comparative analysis of 2498 whole-genome sequences. The ybt locus was detected in 40 % of K. pneumoniae genomes, particularly amongst those associated with invasive infections. We identified 17 distinct ybt lineages and 3 clb lineages, each associated with one of 14 different structural variants of ICEKp. Comparison with the wider population of the family Enterobacteriaceae revealed occasional ICEKp acquisition by other members. The clb locus was present in 14 % of all K. pneumoniae and 38.4 % of ybt+ genomes. Hundreds of independent ICEKp integration events were detected affecting hundreds of phylogenetically distinct K. pneumoniae lineages, including at least 19 in the globally-disseminated carbapenem-resistant clone CG258. A novel plasmid-encoded form of ybt was also identified, representing a new mechanism for ybt dispersal in K. pneumoniae populations. These data indicate that MGEs carrying ybt and clb circulate freely in the K. pneumoniae population, including among multidrug-resistant strains, and should be considered a target for genomic surveillance along with AMR determinants.
  • Item
    Thumbnail Image
    Completing bacterial genome assemblies with multiplex MinION sequencing
    Wick, RR ; Judd, LM ; Gorrie, CL ; Holt, KE (MICROBIOLOGY SOC, 2017-10)
    Illumina sequencing platforms have enabled widespread bacterial whole genome sequencing. While Illumina data is appropriate for many analyses, its short read length limits its ability to resolve genomic structure. This has major implications for tracking the spread of mobile genetic elements, including those which carry antimicrobial resistance determinants. Fully resolving a bacterial genome requires long-read sequencing such as those generated by Oxford Nanopore Technologies (ONT) platforms. Here we describe our use of the ONT MinION to sequence 12 isolates of Klebsiella pneumoniae on a single flow cell. We assembled each genome using a combination of ONT reads and previously available Illumina reads, and little to no manual intervention was needed to achieve fully resolved assemblies using the Unicycler hybrid assembler. Assembling only ONT reads with Canu was less effective, resulting in fewer resolved genomes and higher error rates even following error correction with Nanopolish. We demonstrate that multiplexed ONT sequencing is a valuable tool for high-throughput bacterial genome finishing. Specifically, we advocate the use of Illumina sequencing as a first analysis step, followed by ONT reads as needed to resolve genomic structure.