Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    Thumbnail Image
    p32 protein levels are integral to mitochondrial and endoplasmic reticulum morphology, cell metabolism and survival
    Hu, M ; Crawford, SA ; Henstridge, DC ; Ng, IHW ; Boey, EJH ; Xu, Y ; Febbraio, MA ; Jans, DA ; Bogoyevitch, MA (PORTLAND PRESS LTD, 2013-08-01)
    p32 [also known as HABP1 (hyaluronan-binding protein 1), gC1qR (receptor for globular head domains complement 1q) or C1qbp (complement 1q-binding protein)] has been shown previously to have both mitochondrial and non-mitochondrial localization and functions. In the present study, we show for the first time that endogenous p32 protein is a mitochondrial protein in HeLa cells under control and stress conditions. In defining the impact of altering p32 levels in these cells, we demonstrate that the overexpression of p32 increased mitochondrial fibrils. Conversely, siRNA-mediated p32 knockdown enhanced mitochondrial fragmentation accompanied by a loss of detectable levels of the mitochondrial fusion mediator proteins Mfn (mitofusin) 1 and Mfn2. More detailed ultrastructure analysis by transmission electron microscopy revealed aberrant mitochondrial structures with less and/or fragmented cristae and reduced mitochondrial matrix density as well as more punctate ER (endoplasmic reticulum) with noticeable dissociation of their ribosomes. The analysis of mitochondrial bioenergetics showed significantly reduced capacities in basal respiration and oxidative ATP turnover following p32 depletion. Furthermore, siRNA-mediated p32 knockdown resulted in differential stress-dependent effects on cell death, with enhanced cell death observed in the presence of hyperosmotic stress or cisplatin treatment, but decreased cell death in the presence of arsenite. Taken together, our studies highlight the critical contributions of the p32 protein to the morphology of mitochondria and ER under normal cellular conditions, as well as important roles of the p32 protein in cellular metabolism and various stress responses.
  • Item
    Thumbnail Image
    Tracking protein aggregation and mislocalization in cells with flow cytometry
    Ramdzan, YM ; Polling, S ; Chia, CPZ ; Ng, IHW ; Ormsby, AR ; Croft, NP ; Purcell, AW ; Bogoyevitch, MA ; Ng, DCH ; Gleeson, PA ; Hatters, DM (NATURE PUBLISHING GROUP, 2012-05)
    We applied pulse-shape analysis (PulSA) to monitor protein localization changes in mammalian cells by flow cytometry. PulSA enabled high-throughput tracking of protein aggregation, translocation from the cytoplasm to the nucleus and trafficking from the plasma membrane to the Golgi as well as stress-granule formation. Combining PulSA with tetracysteine-based oligomer sensors in a cell model of Huntington's disease enabled further separation of cells enriched with monomers, oligomers and inclusion bodies.
  • Item
    Thumbnail Image
    Dual role of Src kinase in governing neuronal survival
    Hossaina, MI ; Hoquel, A ; Lessene, G ; Kamaruddin, MA ; Chu, PWY ; Ng, IHW ; Irtegun, S ; Ng, DCH ; Bogoyevitch, MA ; Burgess, AW ; Hill, AF ; Cheng, H-C (ELSEVIER, 2015-01-12)
    BACKGROUND: Src-family kinases (SFKs) are involved in neuronal survival and their aberrant regulation contributes to neuronal death. However, how they control neuronal survival and death remains unclear. OBJECTIVE: To define the effect of inhibition of Src activity and expression on neuronal survival. RESULTS: In agreement with our previous findings, we demonstrated that Src was cleaved by calpain to form a 52-kDa truncated fragment in neurons undergoing excitotoxic cell death, and expression of the recombinant truncated Src fragment induced neuronal death. The data confirm that the neurotoxic signaling pathways are intact in the neurons we used for our study. To define the functional role of neuronal SFKs, we treated these neurons with SFK inhibitors and discovered that the treatment induced cell death, suggesting that the catalytic activity of one or more of the neuronal SFKs is critical to neuronal survival. Using small hairpin RNAs that suppress Src expression, we demonstrated that Src is indispensable to neuronal survival. Additionally, we found that neuronal death induced by expression of the neurotoxic truncated Src mutant, treatment of SFK inhibitors or knock-down of Src expression caused inhibition of the neuroprotective protein kinases Erk1/2, or Akt. CONCLUSIONS: Src is critical to both neuronal survival and death. Intact Src sustains neuronal survival. However, in the excitotoxic condition, calpain cleavage of Src generates a neurotoxic truncated Src fragment. Both intact Src and the neurotoxic truncated Src fragment exert their biological actions by controlling the activities of neuroprotective protein kinases.
  • Item
    Thumbnail Image
    Selective STAT3-α or -β expression reveals spliceform-specific phosphorylation kinetics, nuclear retention and distinct gene expression outcomes
    Ng, IHW ; Ng, DCH ; Jans, DA ; Bogoyevitch, MA (PORTLAND PRESS LTD, 2012-10-01)
    Phosphorylation of STAT3 (signal transducer and activator of transcription 3) is critical for its nuclear import and transcriptional activity. Although a shorter STAT3β spliceform was initially described as a negative regulator of STAT3α, gene knockout studies have revealed that both forms play critical roles. We have expressed STAT3α and STAT3β at comparable levels to facilitate a direct comparison of their functional effects, and have shown their different cytokine-stimulated kinetics of phosphorylation and nuclear translocation. Notably, the sustained nuclear translocation and phosphorylation of STAT3β following cytokine exposure contrasted with a transient nuclear translocation and phosphorylation of STAT3α. Importantly, co-expression of the spliceforms revealed that STAT3β enhanced and prolonged the phosphorylation and nuclear retention of STAT3α, but a STAT3β R609L mutant, with a disrupted SH2 (Src homology 2) domain, was not tyrosine phosphorylated following cytokine stimulation and could not cross-regulate STAT3α. The physiological importance of prolonged phosphorylation and nuclear retention was indicated by transcriptome profiling of STAT3(-/-) cells expressing either STAT3α or STAT3β, revealing the complexity of genes that are up- and down-regulated by the STAT3 spliceforms, including a distinct set of STAT3β-specific genes regulated under basal conditions and after cytokine stimulation. These results highlight STAT3β as a significant transcriptional regulator in its own right, with additional actions to cross-regulate STAT3α phosphorylation and nuclear retention after cytokine stimulation.
  • Item
    Thumbnail Image
    Oxidative stress impairs multiple regulatory events to drive persistent cytokine-stimulated STAT3 phosphorylation
    Huang, C-T ; Huang, D-Y ; Hu, C-J ; Wu, D ; Lin, W-W (ELSEVIER SCIENCE BV, 2014-03)
    Although cytokine-driven STAT3 phosphorylation and activation are often transient, persistent activation of STAT3 is a hallmark of a range of pathologies and underpins altered transcriptional responses. As triggers in disease frequently include combined increases in inflammatory cytokine and reactive oxygen species levels, we report here how oxidative stress impacts on cytokine-driven STAT3 signal transduction events. In the model system of murine embryonic fibroblasts (MEFs), combined treatment with the interleukin-6 family cytokine Leukemia Inhibitory Factor (LIF) and hydrogen peroxide (H2O2) drove persistent STAT3 phosphorylation whereas STAT3 phosphorylation increased only transiently in response to LIF alone and was not increased by H2O2 alone. Surprisingly, increases in transcript levels of the direct STAT3 gene target SOCS3 were delayed during the combined LIF + H2O2 treatment, leading us to probe the impact of oxidative stress on STAT3 regulatory events. Indeed, LIF + H2O2 prolonged JAK activation, delayed STAT3 nuclear localisation, and caused relocalisation of nuclear STAT3 phosphatase TC-PTP (TC45) to the cytoplasm. In exploring the nuclear import/ export pathways, we observed disruption of nuclear/cytoplasmic distributions of Ran and importin-alpha3 in cells exposed to H2O2 and the resultant reduced nuclear trafficking of Classical importin-alpha/3-dependent protein cargoes. CRM1-mediated nuclear export persisted despite the oxidative stress insult, with sustained STAT3 Y705 phosphorylation enhancing STAT3 nuclear residency. Our studies thus reveal for the first time the striking impact of oxidative stress to sustain STAT3 phosphorylation and nuclear retention following disruption of multiple regulatory events, with significant implications for STAT3 function.
  • Item
    No Preview Available
    Intracellular mobility and nuclear trafficking of the stress-activated kinase JNK1 are impeded by hyperosmotic stress
    Misheva, M ; Kaur, G ; Ngoei, KRW ; Yeap, YY ; Ng, IHW ; Wagstaff, KM ; Ng, DCH ; Jans, DA ; Bogoyevitch, MA (ELSEVIER SCIENCE BV, 2014-02)
    The c-Jun N-terminal kinases (JNKs) are a group of stress-activated protein kinases that regulate gene expression changes through specific phosphorylation of nuclear transcription factor substrates. To address the mechanisms underlying JNK nuclear entry, we employed a semi-intact cell system to demonstrate for the first time that JNK1 nuclear entry is dependent on the importin α2/β1 heterodimer and independent of importins α3, α4, β2, β3, 7 and 13. However, quantitative image analysis of JNK1 localization following exposure of cells to either arsenite or hyperosmotic stress did not indicate its nuclear accumulation. Extending our analyses to define the dynamics of nuclear trafficking of JNK1, we combined live cell imaging analyses with fluorescence recovery after photobleaching (FRAP) protocols. Subnuclear and subcytoplasmic bleaching protocols revealed the slowed movement of JNK1 in both regions in response to hyperosmotic stress. Strikingly, while movement into the nucleus of green fluorescent protein (GFP) or transport of a GFP-T-antigen fusion protein as estimated by initial rates and time to reach half-maximal recovery (t1/2) measures remained unaltered, hyperosmotic stress slowed the nuclear entry of GFP-JNK1. In contrast, arsenite exposure which did not alter the initial rates of nuclear accumulation of GFP, GFP-T-antigen or GFP-JNK1, decreased the t1/2 for nuclear accumulation of both GFP and GFP-JNK1. Thus, our results challenge the paradigm of increased nuclear localization of JNK broadly in response to all forms of stress-activation and are consistent with enhanced interactions of stress-activated JNK1 with scaffold and substrate proteins throughout the nucleus and the cytosol under conditions of hyperosmotic stress.
  • Item
    Thumbnail Image
    Selective STAT3-α or -β expression reveals spliceform-specific phosphorylation kinetics, nuclear retention and distinct gene expression outcomes
    Ng, Ivan H. W. ; Ng, Dominic C. H. ; Jans, David A. ; Bogoyevitch, Marie A. (Portland Press, 2012)