Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 10
  • Item
    Thumbnail Image
    Beginner's guide to comparative bacterial genome analysis using next-generation sequence data.
    Edwards, DJ ; Holt, KE (Springer Science and Business Media LLC, 2013-04-10)
    High throughput sequencing is now fast and cheap enough to be considered part of the toolbox for investigating bacteria, and there are thousands of bacterial genome sequences available for comparison in the public domain. Bacterial genome analysis is increasingly being performed by diverse groups in research, clinical and public health labs alike, who are interested in a wide array of topics related to bacterial genetics and evolution. Examples include outbreak analysis and the study of pathogenicity and antimicrobial resistance. In this beginner's guide, we aim to provide an entry point for individuals with a biology background who want to perform their own bioinformatics analysis of bacterial genome data, to enable them to answer their own research questions. We assume readers will be familiar with genetics and the basic nature of sequence data, but do not assume any computer programming skills. The main topics covered are assembly, ordering of contigs, annotation, genome comparison and extracting common typing information. Each section includes worked examples using publicly available E. coli data and free software tools, all which can be performed on a desktop computer.
  • Item
    Thumbnail Image
    Extensive Capsule Locus Variation and Large-Scale Genomic Recombination within the Klebsiella pneumoniae Clonal Group 258
    Wyres, KL ; Gorrie, C ; Edwards, DJ ; Wertheim, HFL ; Hsu, LY ; Nguyen, VK ; Zadoks, R ; Baker, S ; Holt, KE (OXFORD UNIV PRESS, 2015-05)
    Klebsiella pneumoniae clonal group (CG) 258, comprising sequence types (STs) 258, 11, and closely related variants, is associated with dissemination of the K. pneumoniae carbapenemase (KPC). Hospital outbreaks of KPC CG258 infections have been observed globally and are very difficult to treat. As a consequence, there is renewed interest in alternative infection control measures such as vaccines and phage or depolymerase treatments targeting the K. pneumoniae polysaccharide capsule. To date, 78 immunologically distinct capsule variants have been described in K. pneumoniae. Previous investigations of ST258 and a small number of closely related strains suggested that capsular variation was limited within this clone; only two distinct ST258 capsule polysaccharide synthesis (cps) loci have been identified, both acquired through large-scale recombination events (>50 kb). In contrast to previous studies, we report a comparative genomic analysis of the broader K. pneumoniae CG258 (n = 39). We identified 11 different cps loci within CG258, indicating that capsular switching is actually common within the complex. We observed several insertion sequences (IS) within the cps loci, and show further intraclone diversification of two cps loci through IS activity. Our data also indicate that several large-scale recombination events have shaped the genomes of CG258, and that definition of the complex should be broadened to include ST395 (also reported to harbor KPC). As only the second report of extensive intraclonal cps variation among Gram-negative bacterial species, our findings alter our understanding of the evolution of these organisms and have key implications for the design of control measures targeting K. pneumoniae capsules.
  • Item
    Thumbnail Image
    Evolutionary dynamics and genomic features of the Elizabethkingia anophelis 2015 to 2016 Wisconsin outbreak strain
    Perrin, A ; Larsonneur, E ; Nicholson, AC ; Edwards, DJ ; Gundlach, KM ; Whitney, AM ; Gulvik, CA ; Bell, ME ; Rendueles, O ; Cury, J ; Hugon, P ; Clermont, D ; Enouf, V ; Loparev, V ; Juieng, P ; Monson, T ; Warshauer, D ; Elbadawi, LI ; Walters, MS ; Crist, MB ; Noble-Wang, J ; Borlaug, G ; Rocha, EPC ; Criscuolo, A ; Touchon, M ; Davis, JP ; Holt, KE ; McQuiston, JR ; Brisse, S (NATURE PUBLISHING GROUP, 2017-05-24)
    An atypically large outbreak of Elizabethkingia anophelis infections occurred in Wisconsin. Here we show that it was caused by a single strain with thirteen characteristic genomic regions. Strikingly, the outbreak isolates show an accelerated evolutionary rate and an atypical mutational spectrum. Six phylogenetic sub-clusters with distinctive temporal and geographic dynamics are revealed, and their last common ancestor existed approximately one year before the first recognized human infection. Unlike other E. anophelis, the outbreak strain had a disrupted DNA repair mutY gene caused by insertion of an integrative and conjugative element. This genomic change probably contributed to the high evolutionary rate of the outbreak strain and may have increased its adaptability, as many mutations in protein-coding genes occurred during the outbreak. This unique discovery of an outbreak caused by a naturally occurring mutator bacterial pathogen provides a dramatic example of the potential impact of pathogen evolutionary dynamics on infectious disease epidemiology.
  • Item
    Thumbnail Image
    Gastrointestinal Carriage Is a Major Reservoir of Klebsiella pneumoniae Infection in Intensive Care Patients
    Gorrie, CL ; Mirceta, M ; Wick, RR ; Edwards, DJ ; Thomson, NR ; Strugnell, RA ; Pratt, NF ; Garlick, JS ; Watson, KM ; Pilcher, DV ; McGloughlin, SA ; Spelman, DW ; Jenney, AWJ ; Holt, KE (OXFORD UNIV PRESS INC, 2017-07-15)
    BACKGROUND: Klebsiella pneumoniae is an opportunistic pathogen and leading cause of hospital-associated infections. Intensive care unit (ICU) patients are particularly at risk. Klebsiella pneumoniae is part of the healthy human microbiome, providing a potential reservoir for infection. However, the frequency of gut colonization and its contribution to infections are not well characterized. METHODS: We conducted a 1-year prospective cohort study in which 498 ICU patients were screened for rectal and throat carriage of K. pneumoniae shortly after admission. Klebsiella pneumoniae isolated from screening swabs and clinical diagnostic samples were characterized using whole genome sequencing and combined with epidemiological data to identify likely transmission events. RESULTS: Klebsiella pneumoniae carriage frequencies were estimated at 6% (95% confidence interval [CI], 3%-8%) among ICU patients admitted direct from the community, and 19% (95% CI, 14%-51%) among those with recent healthcare contact. Gut colonization on admission was significantly associated with subsequent infection (infection risk 16% vs 3%, odds ratio [OR] = 6.9, P < .001), and genome data indicated matching carriage and infection isolates in 80% of isolate pairs. Five likely transmission chains were identified, responsible for 12% of K. pneumoniae infections in ICU. In sum, 49% of K. pneumoniae infections were caused by the patients' own unique strain, and 48% of screened patients with infections were positive for prior colonization. CONCLUSIONS: These data confirm K. pneumoniae colonization is a significant risk factor for infection in ICU, and indicate ~50% of K. pneumoniae infections result from patients' own microbiota. Screening for colonization on admission could limit risk of infection in the colonized patient and others.
  • Item
    Thumbnail Image
    Genome-scale rates of evolutionary change in bacteria
    Duchene, S ; Holt, KE ; Weill, F-X ; Le Hello, S ; Hawkey, J ; Edwards, DJ ; Fourment, M ; Holmes, EC (MICROBIOLOGY SOC, 2016-11)
    Estimating the rates at which bacterial genomes evolve is critical to understanding major evolutionary and ecological processes such as disease emergence, long-term host-pathogen associations and short-term transmission patterns. The surge in bacterial genomic data sets provides a new opportunity to estimate these rates and reveal the factors that shape bacterial evolutionary dynamics. For many organisms estimates of evolutionary rate display an inverse association with the time-scale over which the data are sampled. However, this relationship remains unexplored in bacteria due to the difficulty in estimating genome-wide evolutionary rates, which are impacted by the extent of temporal structure in the data and the prevalence of recombination. We collected 36 whole genome sequence data sets from 16 species of bacterial pathogens to systematically estimate and compare their evolutionary rates and assess the extent of temporal structure in the absence of recombination. The majority (28/36) of data sets possessed sufficient clock-like structure to robustly estimate evolutionary rates. However, in some species reliable estimates were not possible even with 'ancient DNA' data sampled over many centuries, suggesting that they evolve very slowly or that they display extensive rate variation among lineages. The robustly estimated evolutionary rates spanned several orders of magnitude, from approximately 10-5 to 10-8 nucleotide substitutions per site year-1. This variation was negatively associated with sampling time, with this relationship best described by an exponential decay curve. To avoid potential estimation biases, such time-dependency should be considered when inferring evolutionary time-scales in bacteria.
  • Item
    Thumbnail Image
    ISMapper: identifying transposase insertion sites in bacterial genomes from short read sequence data
    Hawkey, J ; Hamidian, M ; Wick, RR ; Edwards, DJ ; Billman-Jacobe, H ; Hall, RM ; Holt, KE (BIOMED CENTRAL LTD, 2015-09-03)
    BACKGROUND: Insertion sequences (IS) are small transposable elements, commonly found in bacterial genomes. Identifying the location of IS in bacterial genomes can be useful for a variety of purposes including epidemiological tracking and predicting antibiotic resistance. However IS are commonly present in multiple copies in a single genome, which complicates genome assembly and the identification of IS insertion sites. Here we present ISMapper, a mapping-based tool for identification of the site and orientation of IS insertions in bacterial genomes, directly from paired-end short read data. RESULTS: ISMapper was validated using three types of short read data: (i) simulated reads from a variety of species, (ii) Illumina reads from 5 isolates for which finished genome sequences were available for comparison, and (iii) Illumina reads from 7 Acinetobacter baumannii isolates for which predicted IS locations were tested using PCR. A total of 20 genomes, including 13 species and 32 distinct IS, were used for validation. ISMapper correctly identified 97 % of known IS insertions in the analysis of simulated reads, and 98 % in real Illumina reads. Subsampling of real Illumina reads to lower depths indicated ISMapper was able to correctly detect insertions for average genome-wide read depths >20x, although read depths >50x were required to obtain confident calls that were highly-supported by evidence from reads. All ISAba1 insertions identified by ISMapper in the A. baumannii genomes were confirmed by PCR. In each A. baumannii genome, ISMapper successfully identified an IS insertion upstream of the ampC beta-lactamase that could explain phenotypic resistance to third-generation cephalosporins. The utility of ISMapper was further demonstrated by profiling genome-wide IS6110 insertions in 138 publicly available Mycobacterium tuberculosis genomes, revealing lineage-specific insertions and multiple insertion hotspots. CONCLUSIONS: ISMapper provides a rapid and robust method for identifying IS insertion sites directly from short read data, with a high degree of accuracy demonstrated across a wide range of bacteria.
  • Item
    No Preview Available
    Molecular Surveillance Identifies Multiple Transmissions of Typhoid in West Africa
    Wong, VK ; Holt, KE ; Okoro, C ; Baker, S ; Pickard, DJ ; Marks, F ; Page, AJ ; Olanipekun, G ; Munir, H ; Alter, R ; Fey, PD ; Feasey, NA ; Weill, F-X ; Le Hello, S ; Hart, PJ ; Kariuki, S ; Breiman, RF ; Gordon, MA ; Heyderman, RS ; Jacobs, J ; Lunguya, O ; Msefula, C ; MacLennan, CA ; Keddy, KH ; Smith, AM ; Onsare, RS ; De Pinna, E ; Nair, S ; Amos, B ; Dougan, G ; Obaro, S ; Ryan, ET (PUBLIC LIBRARY SCIENCE, 2016-09)
    BACKGROUND: The burden of typhoid in sub-Saharan African (SSA) countries has been difficult to estimate, in part, due to suboptimal laboratory diagnostics. However, surveillance blood cultures at two sites in Nigeria have identified typhoid associated with Salmonella enterica serovar Typhi (S. Typhi) as an important cause of bacteremia in children. METHODS: A total of 128 S. Typhi isolates from these studies in Nigeria were whole-genome sequenced, and the resulting data was used to place these Nigerian isolates into a worldwide context based on their phylogeny and carriage of molecular determinants of antibiotic resistance. RESULTS: Several distinct S. Typhi genotypes were identified in Nigeria that were related to other clusters of S. Typhi isolates from north, west and central regions of Africa. The rapidly expanding S. Typhi clade 4.3.1 (H58) previously associated with multiple antimicrobial resistances in Asia and in east, central and southern Africa, was not detected in this study. However, antimicrobial resistance was common amongst the Nigerian isolates and was associated with several plasmids, including the IncHI1 plasmid commonly associated with S. Typhi. CONCLUSIONS: These data indicate that typhoid in Nigeria was established through multiple independent introductions into the country, with evidence of regional spread. MDR typhoid appears to be evolving independently of the haplotype H58 found in other typhoid endemic countries. This study highlights an urgent need for routine surveillance to monitor the epidemiology of typhoid and evolution of antimicrobial resistance within the bacterial population as a means to facilitate public health interventions to reduce the substantial morbidity and mortality of typhoid.
  • Item
    Thumbnail Image
    Repeated local emergence of carbapenem-resistant Acinetobacter baumannii in a single hospital ward
    Schultz, MB ; Duy, PT ; Nhu, TDH ; Wick, RR ; Ingle, DJ ; Hawkey, J ; Edwards, DJ ; Kenyon, JJ ; Nguyen, PHL ; Campbell, JI ; Thwaites, G ; Nguyen, TKN ; Hall, RM ; Fournier-Level, A ; Baker, S ; Holt, KE (MICROBIOLOGY SOC, 2016-03)
    We recently reported a dramatic increase in the prevalence of carbapenem-resistant Acinetobacter baumannii infections in the intensive care unit (ICU) of a Vietnamese hospital. This upsurge was associated with a specific oxa23-positive clone that was identified by multilocus VNTR analysis. Here, we used whole-genome sequence analysis to dissect the emergence of carbapenem-resistant A. baumannii causing ventilator-associated pneumonia (VAP) in the ICU during 2009-2012. To provide historical context and distinguish microevolution from strain introduction, we compared these genomes with those of A. baumannii asymptomatic carriage and VAP isolates from this same ICU collected during 2003-2007. We identified diverse lineages co-circulating over many years. Carbapenem resistance was associated with the presence of oxa23, oxa40, oxa58 and ndm1 genes in multiple lineages. The majority of resistant isolates were oxa23-positive global clone GC2; fine-scale phylogenomic analysis revealed five distinct GC2 sublineages within the ICU that had evolved locally via independent chromosomal insertions of oxa23 transposons. The increase in infections caused by carbapenem-resistant A. baumannii was associated with transposon-mediated transmission of a carbapenemase gene, rather than clonal expansion or spread of a carbapenemase-harbouring plasmid. Additionally, we found evidence of homologous recombination creating diversity within the local GC2 population, including several events resulting in replacement of the capsule locus. We identified likely donors of the imported capsule locus sequences amongst the A. baumannii isolated on the same ward, suggesting that diversification was largely facilitated via reassortment and sharing of genetic material within the localized A. baumannii population.
  • Item
    Thumbnail Image
    A platform for leveraging next generation sequencing for routine microbiology and public health use
    Rusu, LI ; Wyres, KL ; Reumann, M ; Queiroz, C ; Bojovschi, A ; Conway, T ; Garg, S ; Edwards, DJ ; Hogg, G ; Holt, KE (BIOMED CENTRAL LTD, 2015-12)
    Even with the advent of next-generation sequencing (NGS) technologies which have revolutionised the field of bacterial genomics in recent years, a major barrier still exists to the implementation of NGS for routine microbiological use (in public health and clinical microbiology laboratories). Such routine use would make a big difference to investigations of pathogen transmission and prevention/control of (sometimes lethal) infections. The inherent complexity and high frequency of data analyses on very large sets of bacterial DNA sequence data, the ability to ensure data provenance and automatically track and log all analyses for audit purposes, the need for quick and accurate results, together with an essential user-friendly interface for regular non-technical laboratory staff, are all critical requirements for routine use in a public health setting. There are currently no systems to answer positively to all these requirements, in an integrated manner. In this paper, we describe a system for sequence analysis and interpretation that is highly automated and tackles the issues raised earlier, and that is designed for use in diagnostic laboratories by healthcare workers with no specialist bioinformatics knowledge.
  • Item
    Thumbnail Image
    Evidence of microevolution of Salmonella Typhimurium during a series of egg-associated outbreaks linked to a single chicken farm
    Hawkey, J ; Edwards, DJ ; Dimovski, K ; Hiley, L ; Billman-Jacobe, H ; Hogg, G ; Holt, KE (BMC, 2013-11-19)
    BACKGROUND: The bacterium Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the most frequent causes of foodborne outbreaks of gastroenteritis. Between 2005-2008 a series of S. Typhimurium outbreaks occurred in Tasmania, Australia, that were all traced to eggs originating from a single chicken farm. We sequenced the genomes of 12 isolates linked to these outbreaks, in order to investigate the microevolution of a pathogenic S. Typhimurium clone in a natural, spatiotemporally restricted population. RESULTS: The isolates, which shared a phage type similar to DT135 known locally as 135@ or 135a, formed a clade within the S. Typhimurium population with close similarity to the reference genome SL1334 (160 single nucleotide polymorphisms, or SNPs). Ten of the isolates belonged to a single clone (<23 SNPs between isolate pairs) which likely represents the population of S. Typhimurium circulating at the chicken farm; the other two were from sporadic cases and were genetically distinct from this clone. Divergence dating indicated that all 12 isolates diverged from a common ancestor in the mid 1990 s, and the clone began to diversify in 2003-2004. This clone spilled out into the human population several times between 2005-2008, during which time it continued to accumulate SNPs at a constant rate of 3-5 SNPs per year or 1x10-6 substitutions site-1 year-1, faster than the longer-term (~50 year) rates estimated previously for S. Typhimurium. Our data suggest that roughly half of non-synonymous substitutions are rapidly removed from the S. Typhimurium population, after which purifying selection is no longer important and the remaining substitutions become fixed in the population. The S. Typhimurium 135@ isolates were nearly identical to SL1344 in terms of gene content and virulence plasmids. Their phage contents were close to SL1344, except that they carried a different variant of Gifsy-1, lacked the P2 remnant found in SL1344 and carried a novel P2 phage, P2-Hawk, in place SL1344's P2 phage SopEϕ. DT135 lacks P2 prophage. Two additional plasmids were identified in the S. Typhimurium 135@ isolates, pSTM2 and pSTM7. Both plasmids were IncI1, but phylogenetic analysis of the plasmids and their bacterial hosts shows these plasmids are genetically distinct and result from independent plasmid acquisition events. CONCLUSIONS: This study provides a high-resolution insight into short-term microevolution of the important human pathogen S. Typhimurium. It indicates that purifying selection occurs rapidly in this population (≤ 6 years) and then declines, and provides an estimate for the short-term substitution rate. The latter is likely to be more relevant for foodborne outbreak investigation than previous estimates based on longer time scales.