Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Evolution of a clade of Acinetobacter baumannii global clone 1, lineage 1 via acquisition of carbapenem- and aminoglycoside-resistance genes and dispersion of ISAba1
    Hamidian, M ; Hawkey, J ; Wick, R ; Holt, KE ; Hall, RM (MICROBIOLOGY SOC, 2019-01)
    Resistance to carbapenem and aminoglycoside antibiotics is a critical problem in Acinetobacter baumannii, particularly when genes conferring resistance are acquired by multiply or extensively resistant members of successful globally distributed clonal complexes, such as global clone 1 (GC1) . Here, we investigate the evolution of an expanding clade of lineage 1 of the GC1 complex via repeated acquisition of carbapenem- and aminoglycoside-resistance genes. Lineage 1 arose in the late 1970s and the Tn6168/OCL3 clade arose in the late 1990s from an ancestor that had already acquired resistance to third-generation cephalosporins and fluoroquinolones. Between 2000 and 2002, two distinct subclades have emerged, and they are distinguishable via the presence of an integrated phage genome in subclade 1 and AbaR4 (carrying the oxa23 carbapenem-resistance gene in Tn2006) at a specific chromosomal location in subclade 2. Part or all of the original resistance gene cluster in the chromosomally located AbaR3 has been lost from some isolates, but plasmids carrying alternate resistance genes have been gained. In one group in subclade 2, the chromosomally located AbGRI3, carrying the armA aminoglycoside-resistance gene, has been acquired from a GC2 isolate and incorporated via homologous recombination. ISAba1 entered the common ancestor of this clade as part of the cephalosporin-resistance transposon Tn6168 and has dispersed differently in each subclade. Members of subclade 1 share an ISAba1 in one specific position in the chromosome and in subclade 2 two different ISAba1 locations are shared. Further shared ISAba1 locations distinguish further divisions, potentially providing simple markers for epidemiological studies.
  • Item
    Thumbnail Image
    Emergence and rapid global dissemination of CTX-M-15-associated Klebsiella pneumoniae strain ST307
    Wyres, KL ; Hawkey, J ; Hetland, MAK ; Fostervold, A ; Wick, RR ; Judd, LM ; Hamidian, M ; Howden, BP ; Lohr, IH ; Holt, KE (OXFORD UNIV PRESS, 2019-03)
    OBJECTIVES: Recent reports indicate the emergence of a new carbapenemase-producing Klebsiella pneumoniae clone, ST307. We sought to better understand the global epidemiology and evolution of this clone and evaluate its association with antimicrobial resistance (AMR) genes. METHODS: We collated information from the literature and public databases and performed a comparative analysis of 95 ST307 genomes (including 37 that were newly sequenced). RESULTS: We show that ST307 emerged in the mid-1990s (nearly 20 years prior to its first report), is already globally distributed and is intimately associated with a conserved plasmid harbouring the blaCTX-M-15 ESBL gene and several other AMR determinants. CONCLUSIONS: Our findings support the need for enhanced surveillance of this widespread ESBL clone in which carbapenem resistance has occasionally emerged.
  • Item
    Thumbnail Image
    Evolution of carbapenem resistance in Acinetobacter baumannii during a prolonged infection
    Hawkey, J ; Ascher, DB ; Judd, LM ; Wick, RR ; Kostoulias, X ; Cleland, H ; Spelman, DW ; Padiglione, A ; Peleg, AY ; Holt, KE (MICROBIOLOGY SOC, 2018-03)
    Acinetobacter baumannii is a common causative agent of hospital-acquired infections and a leading cause of infection in burns patients. Carbapenem-resistant A. baumannii is considered a major public-health threat and has been identified by the World Health Organization as the top priority organism requiring new antimicrobials. The most common mechanism for carbapenem resistance in A. baumannii is via horizontal acquisition of carbapenemase genes. In this study, we sampled 20 A. baumannii isolates from a patient with extensive burns, and characterized the evolution of carbapenem resistance over a 45 day period via Illumina and Oxford Nanopore sequencing. All isolates were multidrug resistant, carrying two genomic islands that harboured several antibiotic-resistance genes. Most isolates were genetically identical and represented a single founder genotype. We identified three novel non-synonymous substitutions associated with meropenem resistance: F136L and G288S in AdeB (part of the AdeABC efflux pump) associated with an increase in meropenem MIC to ≥8 µg ml-1; and A515V in FtsI (PBP3, a penicillin-binding protein) associated with a further increase in MIC to 32 µg ml-1. Structural modelling of AdeB and FtsI showed that these mutations affected their drug-binding sites and revealed mechanisms for meropenem resistance. Notably, one of the adeB mutations arose prior to meropenem therapy but following ciprofloxacin therapy, suggesting exposure to one drug whose resistance is mediated by the efflux pump can induce collateral resistance to other drugs to which the bacterium has not yet been exposed.
  • Item
    Thumbnail Image
    ISMapper: identifying transposase insertion sites in bacterial genomes from short read sequence data
    Hawkey, J ; Hamidian, M ; Wick, RR ; Edwards, DJ ; Billman-Jacobe, H ; Hall, RM ; Holt, KE (BIOMED CENTRAL LTD, 2015-09-03)
    BACKGROUND: Insertion sequences (IS) are small transposable elements, commonly found in bacterial genomes. Identifying the location of IS in bacterial genomes can be useful for a variety of purposes including epidemiological tracking and predicting antibiotic resistance. However IS are commonly present in multiple copies in a single genome, which complicates genome assembly and the identification of IS insertion sites. Here we present ISMapper, a mapping-based tool for identification of the site and orientation of IS insertions in bacterial genomes, directly from paired-end short read data. RESULTS: ISMapper was validated using three types of short read data: (i) simulated reads from a variety of species, (ii) Illumina reads from 5 isolates for which finished genome sequences were available for comparison, and (iii) Illumina reads from 7 Acinetobacter baumannii isolates for which predicted IS locations were tested using PCR. A total of 20 genomes, including 13 species and 32 distinct IS, were used for validation. ISMapper correctly identified 97 % of known IS insertions in the analysis of simulated reads, and 98 % in real Illumina reads. Subsampling of real Illumina reads to lower depths indicated ISMapper was able to correctly detect insertions for average genome-wide read depths >20x, although read depths >50x were required to obtain confident calls that were highly-supported by evidence from reads. All ISAba1 insertions identified by ISMapper in the A. baumannii genomes were confirmed by PCR. In each A. baumannii genome, ISMapper successfully identified an IS insertion upstream of the ampC beta-lactamase that could explain phenotypic resistance to third-generation cephalosporins. The utility of ISMapper was further demonstrated by profiling genome-wide IS6110 insertions in 138 publicly available Mycobacterium tuberculosis genomes, revealing lineage-specific insertions and multiple insertion hotspots. CONCLUSIONS: ISMapper provides a rapid and robust method for identifying IS insertion sites directly from short read data, with a high degree of accuracy demonstrated across a wide range of bacteria.
  • Item
    Thumbnail Image
    Repeated local emergence of carbapenem-resistant Acinetobacter baumannii in a single hospital ward
    Schultz, MB ; Duy, PT ; Nhu, TDH ; Wick, RR ; Ingle, DJ ; Hawkey, J ; Edwards, DJ ; Kenyon, JJ ; Nguyen, PHL ; Campbell, JI ; Thwaites, G ; Nguyen, TKN ; Hall, RM ; Fournier-Level, A ; Baker, S ; Holt, KE (MICROBIOLOGY SOC, 2016-03)
    We recently reported a dramatic increase in the prevalence of carbapenem-resistant Acinetobacter baumannii infections in the intensive care unit (ICU) of a Vietnamese hospital. This upsurge was associated with a specific oxa23-positive clone that was identified by multilocus VNTR analysis. Here, we used whole-genome sequence analysis to dissect the emergence of carbapenem-resistant A. baumannii causing ventilator-associated pneumonia (VAP) in the ICU during 2009-2012. To provide historical context and distinguish microevolution from strain introduction, we compared these genomes with those of A. baumannii asymptomatic carriage and VAP isolates from this same ICU collected during 2003-2007. We identified diverse lineages co-circulating over many years. Carbapenem resistance was associated with the presence of oxa23, oxa40, oxa58 and ndm1 genes in multiple lineages. The majority of resistant isolates were oxa23-positive global clone GC2; fine-scale phylogenomic analysis revealed five distinct GC2 sublineages within the ICU that had evolved locally via independent chromosomal insertions of oxa23 transposons. The increase in infections caused by carbapenem-resistant A. baumannii was associated with transposon-mediated transmission of a carbapenemase gene, rather than clonal expansion or spread of a carbapenemase-harbouring plasmid. Additionally, we found evidence of homologous recombination creating diversity within the local GC2 population, including several events resulting in replacement of the capsule locus. We identified likely donors of the imported capsule locus sequences amongst the A. baumannii isolated on the same ward, suggesting that diversification was largely facilitated via reassortment and sharing of genetic material within the localized A. baumannii population.