Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    Thumbnail Image
    Dynamic microtubule association of Doublecortin X (DCX) is regulated by its C-terminus
    Moslehi, M ; Ng, DCH ; Bogoyevitch, MA (NATURE PUBLISHING GROUP, 2017-07-12)
    Doublecortin X (DCX), known to be essential for neuronal migration and cortical layering in the developing brain, is a 40 kDa microtubule (MT)-associated protein. DCX directly interacts with MTs via its two structured doublecortin (DC) domains, but the dynamics of this association and the possible regulatory roles played by the flanking unstructured regions remain poorly defined. Here, we employ quantitative fluorescence recovery after photobleaching (FRAP) protocols in living cells to reveal that DCX shows remarkably rapid and complete exchange within the MT network but that the removal of the C-terminal region significantly slows this exchange. We further probed how MT organization or external stimuli could additionally modulate DCX exchange dynamics. MT depolymerisation (nocodazole treatment) or stabilization (taxol treatment) further enhanced DCX exchange rates, however the exchange rates for the C-terminal truncated DCX protein were resistant to the impact of taxol-induced stabilization. Furthermore, in response to a hyperosmotic stress stimulus, DCX exchange dynamics were slowed, and again the C-terminal truncated DCX protein was resistant to the stimulus. Thus, the DCX dynamically associates with MTs in living cells and its C-terminal region plays important roles in the MT-DCX association.
  • Item
    Thumbnail Image
    Tracking protein aggregation and mislocalization in cells with flow cytometry
    Ramdzan, YM ; Polling, S ; Chia, CPZ ; Ng, IHW ; Ormsby, AR ; Croft, NP ; Purcell, AW ; Bogoyevitch, MA ; Ng, DCH ; Gleeson, PA ; Hatters, DM (NATURE PUBLISHING GROUP, 2012-05)
    We applied pulse-shape analysis (PulSA) to monitor protein localization changes in mammalian cells by flow cytometry. PulSA enabled high-throughput tracking of protein aggregation, translocation from the cytoplasm to the nucleus and trafficking from the plasma membrane to the Golgi as well as stress-granule formation. Combining PulSA with tetracysteine-based oligomer sensors in a cell model of Huntington's disease enabled further separation of cells enriched with monomers, oligomers and inclusion bodies.
  • Item
    Thumbnail Image
    Dual role of Src kinase in governing neuronal survival
    Hossaina, MI ; Hoquel, A ; Lessene, G ; Kamaruddin, MA ; Chu, PWY ; Ng, IHW ; Irtegun, S ; Ng, DCH ; Bogoyevitch, MA ; Burgess, AW ; Hill, AF ; Cheng, H-C (ELSEVIER, 2015-01-12)
    BACKGROUND: Src-family kinases (SFKs) are involved in neuronal survival and their aberrant regulation contributes to neuronal death. However, how they control neuronal survival and death remains unclear. OBJECTIVE: To define the effect of inhibition of Src activity and expression on neuronal survival. RESULTS: In agreement with our previous findings, we demonstrated that Src was cleaved by calpain to form a 52-kDa truncated fragment in neurons undergoing excitotoxic cell death, and expression of the recombinant truncated Src fragment induced neuronal death. The data confirm that the neurotoxic signaling pathways are intact in the neurons we used for our study. To define the functional role of neuronal SFKs, we treated these neurons with SFK inhibitors and discovered that the treatment induced cell death, suggesting that the catalytic activity of one or more of the neuronal SFKs is critical to neuronal survival. Using small hairpin RNAs that suppress Src expression, we demonstrated that Src is indispensable to neuronal survival. Additionally, we found that neuronal death induced by expression of the neurotoxic truncated Src mutant, treatment of SFK inhibitors or knock-down of Src expression caused inhibition of the neuroprotective protein kinases Erk1/2, or Akt. CONCLUSIONS: Src is critical to both neuronal survival and death. Intact Src sustains neuronal survival. However, in the excitotoxic condition, calpain cleavage of Src generates a neurotoxic truncated Src fragment. Both intact Src and the neurotoxic truncated Src fragment exert their biological actions by controlling the activities of neuroprotective protein kinases.
  • Item
    Thumbnail Image
    Selective STAT3-α or -β expression reveals spliceform-specific phosphorylation kinetics, nuclear retention and distinct gene expression outcomes
    Ng, IHW ; Ng, DCH ; Jans, DA ; Bogoyevitch, MA (PORTLAND PRESS LTD, 2012-10-01)
    Phosphorylation of STAT3 (signal transducer and activator of transcription 3) is critical for its nuclear import and transcriptional activity. Although a shorter STAT3β spliceform was initially described as a negative regulator of STAT3α, gene knockout studies have revealed that both forms play critical roles. We have expressed STAT3α and STAT3β at comparable levels to facilitate a direct comparison of their functional effects, and have shown their different cytokine-stimulated kinetics of phosphorylation and nuclear translocation. Notably, the sustained nuclear translocation and phosphorylation of STAT3β following cytokine exposure contrasted with a transient nuclear translocation and phosphorylation of STAT3α. Importantly, co-expression of the spliceforms revealed that STAT3β enhanced and prolonged the phosphorylation and nuclear retention of STAT3α, but a STAT3β R609L mutant, with a disrupted SH2 (Src homology 2) domain, was not tyrosine phosphorylated following cytokine stimulation and could not cross-regulate STAT3α. The physiological importance of prolonged phosphorylation and nuclear retention was indicated by transcriptome profiling of STAT3(-/-) cells expressing either STAT3α or STAT3β, revealing the complexity of genes that are up- and down-regulated by the STAT3 spliceforms, including a distinct set of STAT3β-specific genes regulated under basal conditions and after cytokine stimulation. These results highlight STAT3β as a significant transcriptional regulator in its own right, with additional actions to cross-regulate STAT3α phosphorylation and nuclear retention after cytokine stimulation.
  • Item
    Thumbnail Image
    Identification and characterization of bi-thiazole-2,2′-diamines as kinase inhibitory scaffolds
    Ngoei, KRW ; Ng, DCH ; Gooley, PR ; Fairlie, DP ; Stoermer, M ; Bogoyevitch, MA (ELSEVIER SCIENCE BV, 2013-06)
    Based on bioinformatics interrogation of the genome, >500 mammalian protein kinases can be clustered within seven different groups. Of these kinases, the mitogen-activated protein kinase (MAPK) family forms part of the CMGC group of serine/threonine kinases that includes extracellular signal regulated kinases (ERKs), cJun N-terminal kinases (JNKs), and p38 MAPKs. With the JNKs considered attractive targets in the treatment of pathologies including diabetes and stroke, efforts have been directed to the discovery of new JNK inhibitory molecules that can be further developed as new therapeutics. Capitalizing on our biochemical understanding of JNK, we performed in silico screens of commercially available chemical databases to identify JNK1-interacting compounds and tested their in vitro JNK inhibitory activity. With in vitro and cell culture studies, we showed that the compound, 4'-methyl-N(2)-3-pyridinyl-4,5'-bi-1,3-thiazole-2,2'-diamine (JNK Docking (JD) compound 123, but not the related compound (4'-methyl-N~2~-(6-methyl-2-pyridinyl)-4,5'-bi-1,3-thiazole-2,2'-diamine (JD124), inhibited JNK1 activity towards a range of substrates. Molecular docking, saturation transfer difference NMR experiments and enzyme kinetic analyses revealed both ATP- and substrate-competitive inhibition of JNK by JD123. In characterizing JD123 further, we noted its ATP-competitive inhibition of the related p38-γ MAPK, but not ERK1, ERK2, or p38-α, p38-β or p38-δ. Further screening of a broad panel of kinases using 10μM JD123, identified inhibition of kinases including protein kinase Bβ (PKBβ/Aktβ). Appropriately modified thiazole diamines, as typified by JD123, thus provide a new chemical scaffold for development of inhibitors for the JNK and p38-γ MAPKs as well as other kinases that are also potential therapeutic targets such as PKBβ/Aktβ.
  • Item
    Thumbnail Image
    Differences in c-Jun N-terminal kinase recognition and phosphorylation of closely related stathmin-family members
    Yip, YY ; Yeap, YYC ; Bogoyevitch, MA ; Ng, DCH (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2014-03-28)
    The stathmin (STMN) family of tubulin-binding phosphoproteins are critical regulators of interphase microtubule dynamics and organization in a broad range of cellular processes. c-Jun N-terminal kinase (JNK) signalling to STMN family proteins has been implicated specifically in neuronal maturation, degeneration and cell stress responses more broadly. Previously, we characterized mechanisms underlying JNK phosphorylation of STMN at proline-flanked serine residues (Ser25 and Ser38) that are conserved across STMN-like proteins. In this study, we demonstrated using in vitro kinase assays and alanine replacement of serine residues that JNK phosphorylated the STMN-like domain (SLD) of SCG10 on Ser73, consistent with our previous finding that STMN Ser38 was the primary JNK target site. In addition, we confirmed that a JNK binding motif ((41)KKKDLSL(47)) that facilitates JNK targeting of STMN is conserved in SCG10. In contrast, SCLIP was phosphorylated by JNK primarily on Ser60 which corresponds to Ser25 on STMN. Moreover, although the JNK-binding motif identified in STMN and SCG10 was not conserved in SCLIP, JNK phosphorylation of SCLIP was inhibited by a substrate competitive peptide (TI-JIP) highlighting kinase-substrate interaction as required for JNK targeting. Thus, STMN and SCG10 are similarly targeted by JNK but there are clear differences in JNK recognition and phosphorylation of the closely related family member, SCLIP.
  • Item
    No Preview Available
    cAMP-dependent Protein Kinase and c-Jun N-terminal Kinase Mediate Stathmin Phosphorylation for the Maintenance of Interphase Microtubules during Osmotic Stress
    Yip, YY ; Yeap, YYC ; Bogoyevitch, MA ; Ng, DCH (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2014-01-24)
    Dynamic microtubule changes after a cell stress challenge are required for cell survival and adaptation. Stathmin (STMN), a cytoplasmic microtubule-destabilizing phosphoprotein, regulates interphase microtubules during cell stress, but the signaling mechanisms involved are poorly defined. In this study ectopic expression of single alanine-substituted phospho-resistant mutants demonstrated that STMN Ser-38 and Ser-63 phosphorylation were specifically required to maintain interphase microtubules during hyperosmotic stress. STMN was phosphorylated on Ser-38 and Ser-63 in response to hyperosmolarity, heat shock, and arsenite treatment but rapidly dephosphorylated after oxidative stress treatment. Two-dimensional PAGE and Phos-tag gel analysis of stress-stimulated STMN phospho-isoforms revealed rapid STMN Ser-38 phosphorylation followed by subsequent Ser-25 and Ser-63 phosphorylation. Previously, we delineated stress-stimulated JNK targeting of STMN. Here, we identified cAMP-dependent protein kinase (PKA) signaling as responsible for stress-induced STMN Ser-63 phosphorylation. Increased cAMP levels induced by cholera toxin triggered potent STMN Ser-63 phosphorylation. Osmotic stress stimulated an increase in PKA activity and elevated STMN Ser-63 and CREB (cAMP-response element-binding protein) Ser-133 phosphorylation that was substantially attenuated by pretreatment with H-89, a PKA inhibitor. Interestingly, PKA activity and subsequent phosphorylation of STMN were augmented in the absence of JNK activation, indicating JNK and PKA pathway cross-talk during stress regulation of STMN. Taken together our study indicates that JNK- and PKA-mediated STMN Ser-38 and Ser-63 phosphorylation are required to preserve interphase microtubules in response to hyperosmotic stress.
  • Item
    No Preview Available
    Intracellular mobility and nuclear trafficking of the stress-activated kinase JNK1 are impeded by hyperosmotic stress
    Misheva, M ; Kaur, G ; Ngoei, KRW ; Yeap, YY ; Ng, IHW ; Wagstaff, KM ; Ng, DCH ; Jans, DA ; Bogoyevitch, MA (ELSEVIER SCIENCE BV, 2014-02)
    The c-Jun N-terminal kinases (JNKs) are a group of stress-activated protein kinases that regulate gene expression changes through specific phosphorylation of nuclear transcription factor substrates. To address the mechanisms underlying JNK nuclear entry, we employed a semi-intact cell system to demonstrate for the first time that JNK1 nuclear entry is dependent on the importin α2/β1 heterodimer and independent of importins α3, α4, β2, β3, 7 and 13. However, quantitative image analysis of JNK1 localization following exposure of cells to either arsenite or hyperosmotic stress did not indicate its nuclear accumulation. Extending our analyses to define the dynamics of nuclear trafficking of JNK1, we combined live cell imaging analyses with fluorescence recovery after photobleaching (FRAP) protocols. Subnuclear and subcytoplasmic bleaching protocols revealed the slowed movement of JNK1 in both regions in response to hyperosmotic stress. Strikingly, while movement into the nucleus of green fluorescent protein (GFP) or transport of a GFP-T-antigen fusion protein as estimated by initial rates and time to reach half-maximal recovery (t1/2) measures remained unaltered, hyperosmotic stress slowed the nuclear entry of GFP-JNK1. In contrast, arsenite exposure which did not alter the initial rates of nuclear accumulation of GFP, GFP-T-antigen or GFP-JNK1, decreased the t1/2 for nuclear accumulation of both GFP and GFP-JNK1. Thus, our results challenge the paradigm of increased nuclear localization of JNK broadly in response to all forms of stress-activation and are consistent with enhanced interactions of stress-activated JNK1 with scaffold and substrate proteins throughout the nucleus and the cytosol under conditions of hyperosmotic stress.
  • Item
    No Preview Available
    Cardioprotective 3′,4′-dihydroxyflavonol attenuation of JNK and p38MAPK signalling involves CaMKII inhibition
    Lim, NR ; Thomas, CJ ; Silva, LS ; Yeap, YY ; Yap, S ; Bell, JR ; Delbridge, LMD ; Bogoyevitch, MA ; Woodman, OL ; Williams, SJ ; May, CN ; Ng, DCH (PORTLAND PRESS LTD, 2013-12-01)
    DiOHF (3',4'-dihydroxyflavonol) is cardioprotective against I/R (ischaemia/reperfusion) injury. The biological activities of flavonols are associated with kinase modulation to alter cell signalling. We thus investigated the effects of DiOHF on the activation of MAPKs (mitogen-activated protein kinases) that regulate the cardiac stress response. In an ovine model of I/R, JNK (c-Jun N-terminal kinase), p38(MAPK), ERK (extracellular-signal-regulated kinase) and Akt were activated, and NP202, a pro-drug of DiOHF, reduced infarct size and inhibited JNK and p38(MAPK) activation, whereas ERK and Akt phosphorylation were unaltered. Similarly, in cultured myoblasts, DiOHF pre-treatment preserved viability and inhibited activation of JNK and p38(MAPK), but not ERK in response to acute oxidative and chemotoxic stress. Furthermore, DiOHF prevented stress-activation of the direct upstream regulators MKK4/7 (MAPK kinase 4/7) and MKK3/6 respectively. We utilized small-molecule affinity purification and identified CaMKII (Ca(2+)/calmodulin-dependent protein kinase II) as a kinase targeted by DiOHF and demonstrated potent CaMKII inhibition by DiOHF in vitro. Moreover, the specific inhibition of CaMKII with KN-93, but not KN-92, prevented oxidative stress-induced activation of JNK and p38(MAPK). The present study indicates DiOHF inhibition of CaMKII and attenuation of MKK3/6→p38(MAPK) and MKK4/7→JNK signalling as a requirement for the protective effects of DiOHF against stress stimuli and myocardial I/R injury.
  • Item
    No Preview Available
    WD40-repeat protein 62 is a JNK-phosphorylated spindle pole protein required for spindle maintenance and timely mitotic progression
    Bogoyevitch, MA ; Yeap, YYC ; Qu, Z ; Ngoei, KR ; Yip, YY ; Zhao, TT ; Heng, JI ; Ng, DCH (COMPANY BIOLOGISTS LTD, 2012-11-01)
    The impact of aberrant centrosomes and/or spindles on asymmetric cell division in embryonic development indicates the tight regulation of bipolar spindle formation and positioning that is required for mitotic progression and cell fate determination. WD40-repeat protein 62 (WDR62) was recently identified as a spindle pole protein linked to the neurodevelopmental defect of microcephaly but its roles in mitosis have not been defined. We report here that the in utero electroporation of neuroprogenitor cells with WDR62 siRNAs induced their cell cycle exit and reduced their proliferative capacity. In cultured cells, we demonstrated cell-cycle-dependent accumulation of WDR62 at the spindle pole during mitotic entry that persisted until metaphase-anaphase transition. Utilizing siRNA depletion, we revealed WDR62 function in stabilizing the mitotic spindle specifically during metaphase. WDR62 loss resulted in spindle orientation defects, decreased the integrity of centrosomes displaced from the spindle pole and delayed mitotic progression. Additionally, we revealed JNK phosphorylation of WDR62 is required for maintaining metaphase spindle organization during mitosis. Our study provides the first functional characterization of WDR62 and has revealed requirements for JNK/WDR62 signaling in mitotic spindle regulation that may be involved in coordinating neurogenesis.