Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    A Biosensor of Src Family Kinase Conformation by Exposable Tetracysteine Useful for Cell-Based Screening
    Irtegun, S ; Wood, R ; Lackovic, K ; Schweiggert, J ; Ramdzan, YM ; Huang, DCS ; Mulhern, TD ; Hatters, DM (AMER CHEMICAL SOC, 2014-07)
    We developed a new approach to distinguish distinct protein conformations in live cells. The method, exposable tetracysteine (XTC), involved placing an engineered tetracysteine motif into a target protein that has conditional access to biarsenical dye binding by conformational state. XTC was used to distinguish open and closed regulatory conformations of Src family kinases. Substituting just four residues with cysteines in the conserved SH2 domain of three Src-family kinases (c-Src, Lck, Lyn) enabled open and closed conformations to be monitored on the basis of binding differences to biarsenical dyes FlAsH or ReAsH. Fusion of the kinases with a fluorescent protein tracked the kinase presence, and the XTC approach enabled simultaneous assessment of regulatory state. The c-Src XTC biosensor was applied in a boutique screen of kinase inhibitors, which revealed six compounds to induce conformational closure. The XTC approach demonstrates new potential for assays targeting conformational changes in key proteins in disease and biology.
  • Item
    No Preview Available
    Misfolded Polyglutamine, Polyalanine, and Superoxide Dismutase 1 Aggregate via Distinct Pathways in the Cell
    Polling, S ; Mok, Y-F ; Ramdzan, YM ; Turner, BJ ; Yerbury, JJ ; Hill, AF ; Hatters, DM (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2014-03-07)
    Protein aggregation into intracellular inclusions is a key feature of many neurodegenerative disorders. A common theme has emerged that inappropriate self-aggregation of misfolded or mutant polypeptide sequences is detrimental to cell health. Yet protein quality control mechanisms may also deliberately cluster them together into distinct inclusion subtypes, including the insoluble protein deposit (IPOD) and the juxtanuclear quality control (JUNQ). Here we investigated how the intrinsic oligomeric state of three model systems of disease-relevant mutant protein and peptide sequences relates to the IPOD and JUNQ patterns of aggregation using sedimentation velocity analysis. Two of the models (polyalanine (37A) and superoxide dismutase 1 (SOD1) mutants A4V and G85R) accumulated into the same JUNQ-like inclusion whereas the other, polyglutamine (72Q), formed spatially distinct IPOD-like inclusions. Using flow cytometry pulse shape analysis (PulSA) to separate cells with inclusions from those without revealed the SOD1 mutants and 37A to have abruptly altered oligomeric states with respect to the nonaggregating forms, regardless of whether cells had inclusions or not, whereas 72Q was almost exclusively monomeric until inclusions formed. We propose that mutations leading to JUNQ inclusions induce a constitutively "misfolded" state exposing hydrophobic side chains that attract and ultimately overextend protein quality capacity, which leads to aggregation into JUNQ inclusions. Poly(Q) is not misfolded in this same sense due to universal polar side chains, but is highly prone to forming amyloid fibrils that we propose invoke a different engagement mechanism with quality control.
  • Item
    Thumbnail Image
    High-Throughput Quantitation of Intracellular Trafficking and Organelle Disruption by Flow Cytometry
    Chia, PZC ; Ramdzan, YM ; Houghton, FJ ; Hatters, DM ; Gleeson, PA (WILEY, 2014-05)
    Current methods for the quantitation of membrane protein trafficking rely heavily on microscopy, which has limited quantitative capacity for analyses of cell populations and is cumbersome to perform. Here we describe a simple flow cytometry-based method that circumvents these limitations. The method utilizes fluorescent pulse-width measurements as a highly sensitive indicator to monitor the changes in intracellular distributions of a fluorescently labelled molecule in a cell. Pulse-width analysis enabled us to discriminate cells with target proteins in different intracellular locations including Golgi, lyso-endosomal network and the plasma membrane, as well as detecting morphological changes in organelles such as Golgi perturbation. The movement of endogenous and exogenous retrograde cargo was tracked from the plasma membrane-to-endosomes-to-Golgi, by decreasing pulse-width values. A block in transport upon RNAi-mediated ablation of transport machinery was readily quantified, demonstrating the versatility of this technique to identify pathway inhibitors. We also showed that pulse-width can be exploited to sort and recover cells based on different intracellular staining patterns, e.g. early endosomes and Golgi, opening up novel downstream applications. Overall, the method provides new capabilities for viewing membrane transport in thousands of cells per minute, unbiased analysis of the trafficking of cargo, and the potential for rapid screening of inhibitors of trafficking pathways.
  • Item
    No Preview Available
    Misfolded polyglutamine, polyalanine, and superoxide dismutase 1 aggregate via distinct pathways in the cell
    Polling, Saskia ; MOK, YEE-FOONG ; Ramdzan, Yasmin M. ; Turner, Bradley J. ; Yerbury, Justin J. ; Hill, Andrew F. ; Hatters, Danny M. (American Society for Biochemistry and Molecular Biology, 2014)
    Protein aggregation into intracellular inclusions is a key feature of many neurodegenerative disorders. A common theme has emerged that inappropriate selfaggregation of misfolded or mutant polypeptide sequences is detrimental to cell health. Yet protein quality control mechanisms may also deliberately cluster them together into distinct inclusion sub-types, including the insoluble protein deposit (IPOD) and the juxtanuclear quality control (JUNQ). Here we investigated how the intrinsic oligomeric state of three model systems of disease-relevant mutant protein and peptide sequences relates to the IPOD and JUNQ patterns of aggregation using sedimentation velocity analysis (SVA). Two of the models (polyalanine (37A) and superoxide dismutase 1 (SOD1) mutants A4V and G85R) accumulated into the same JUNQ-like inclusion whereas the other, polyglutamine (72Q), formed spatially distinct IPOD-like inclusions. Using flow cytometry pulse shape analysis to separate cells with inclusions from those without revealed the SOD1 mutants and 37A to have abruptly altered oligomeric states with respect to the non-aggregating forms, regardless of whether cells had inclusions or not; whereas 72Q was almost exclusively monomeric until inclusions formed. We propose mutations leading to JUNQ inclusions induce a constitutively "misfolded" state exposing hydrophobic sidechains that attract and ultimately overextend protein quality capacity, which leads to aggregation into JUNQ inclusions. PolyQ is not "misfolded" in this same sense due to universal polar sidechains, but is highly prone to forming amyloid fibrils that we propose invoke a different engagement mechanism with quality control.