Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 151
  • Item
    Thumbnail Image
    Ribosomal Protein S3 Gene Silencing Protects Against Cigarette Smoke-Induced Acute Lung Injury
    Dong, J ; Liao, W ; Peh, HY ; Tan, WSD ; Zhou, S ; Wong, WSF (CELL PRESS, 2018-09-07)
    Chronic obstructive pulmonary disease (COPD) is estimated to be the third leading cause of death by 2030. Transcription factor NF-κB may play a critical role in COPD pathogenesis. Ribosomal protein S3 (RPS3), a 40S ribosomal protein essential for executing protein translation, has recently been found to interact with the NF-κB p65 subunit and promote p65 DNA-binding activity. We sought to study whether RPS3 gene silencing could protect against cigarette-smoke (CS)-induced acute lung injury in a mouse model. Effects of an intratracheal RPS3 siRNA in CS-induced lung injury were determined by measuring bronchoalveolar lavage (BAL) fluid cell counts, levels of inflammatory and oxidative damage markers, and NF-κB translocation. Lung RPS3 level was found to be upregulated for the first time with CS exposure, and RPS3 siRNA blocked CS-induced neutrophil counts in BAL fluid. RPS3 siRNA suppressed CS-induced lung inflammatory mediator and oxidative damage marker levels, as well as nuclear p65 accumulation and transcriptional activation. RPS3 siRNA was able to disrupt CS extract (CSE)-induced NF-κB activation in an NF-κB reporter gene assay. We report for the first time that RPS3 gene silencing ameliorated CS-induced acute lung injury, probably via interruption of the NF-κB activity, postulating that RPS3 is a novel therapeutic target for COPD.
  • Item
    Thumbnail Image
    Resolving Viral-Induced Secondary Bacterial Infection in COPD: A Concise Review
    Wang, H ; Anthony, D ; Selemidis, S ; Vlahos, R ; Bozinovski, S (FRONTIERS MEDIA SA, 2018-10-16)
    Chronic obstructive pulmonary disease (COPD) is a leading cause of disability and death world-wide, where chronic inflammation accelerates lung function decline. Pathological inflammation is worsened by chronic bacterial lung infections and susceptibility to recurrent acute exacerbations of COPD (AECOPD), typically caused by viral and/or bacterial respiratory pathogens. Despite ongoing efforts to reduce AECOPD rates with inhaled corticosteroids, COPD patients remain at heightened risk of developing serious lung infections/AECOPD, frequently leading to hospitalization and infection-dependent delirium. Here, we review emerging mechanisms into why COPD patients are susceptible to chronic bacterial infections and highlight dysregulated inflammation and production of reactive oxygen species (ROS) as central causes. This underlying chronic infection leaves COPD patients particularly vulnerable to acute viral infections, which further destabilize host immunity to bacteria. The pathogeneses of bacterial and viral exacerbations are significant as clinical symptoms are more severe and there is a marked increase in neutrophilic inflammation and tissue damage. AECOPD triggered by a bacterial and viral co-infection increases circulating levels of the systemic inflammatory marker, serum amyloid A (SAA). SAA is a functional agonist for formyl peptide receptor 2 (FPR2/ALX), where it promotes chemotaxis and survival of neutrophils. Excessive levels of SAA can antagonize the protective actions of FPR2/ALX that involve engagement of specialized pro-resolving mediators, such as resolvin-D1. We propose that the anti-microbial and anti-inflammatory actions of specialized pro-resolving mediators, such as resolvin-D1 should be harnessed for the treatment of AECOPD that are complicated by the co-pathogenesis of viruses and bacteria.
  • Item
    Thumbnail Image
    Epithelial disruption: a new paradigm enabling human airway stem cell transplantation
    Farrow, N ; Cmielewski, P ; Donnelley, M ; Rout-Pitt, N ; Moodley, Y ; Bertoncello, I ; Parsons, D (BMC, 2018-06-13)
    BACKGROUND: Airway disease is a primary cause of morbidity and early mortality for patients with cystic fibrosis (CF). Cell transplantation therapy has proven successful for treating immune disorders and may have the potential to correct the airway disease phenotype associated with CF. Since in vivo cell delivery into unconditioned mouse airways leads to inefficient engraftment, we hypothesised that disrupting the epithelial cell layer using the agent polidocanol (PDOC) would facilitate effective transplantation of cultured stem cells in mouse nasal airways. METHODS: In this study, 4 μL of 2% PDOC in phosphate-buffered saline was administered to the nasal airway of mice to disrupt the epithelium. At 2 or 24 h after PDOC treatment, two types of reporter gene-expressing cells were transplanted into the animals: luciferase-transduced human airway basal cells (hABC-Luc) or luciferase-transduced human amnion epithelial cells (hAEC-Luc). Bioluminescence imaging was used to assess the presence of transplanted luciferase-expressing cells over time. Data were evaluated by using two-way analysis of variance with Sidak's multiple comparison. RESULTS: Successful transplantation was observed when hABCs were delivered 2 h after PDOC but was absent when transplantation was performed 24 h after PDOC, suggesting that a greater competitive advantage for the donor cells is present at the earlier time point. The lack of transplantation of hAECs 24 h after PDOC supports the importance of choosing the correct timing and cell type to facilitate transplantation. CONCLUSIONS: These studies into factors that may enable successful airway transplantation of human stem cells showed that extended functioning cell presence is feasible and further supports the development of methods that alter normal epithelial layer integrity. With improvements in efficacy, manipulating the airway epithelium to make it permissive towards cell transplantation may provide another option for safe and effective correction of CF transmembrane conductance regulator function in CF airways.
  • Item
    Thumbnail Image
    Identification of novel lipid modifications and intermembrane dynamics in Corynebacterium glutamicum using high-resolution mass spectrometry
    Klatt, S ; Brammananth, R ; O'Callaghan, S ; Kouremenos, KA ; Tull, D ; Crellin, PK ; Coppel, RL ; McConville, MJ (ELSEVIER, 2018-07-01)
    The complex cell envelopes of Corynebacterineae contribute to the virulence of pathogenic species (such as Mycobacterium tuberculosis and Corynebacterium diphtheriae) and capacity of nonpathogenic species (such as Corynebacterium glutamicum) to grow in diverse niches. The Corynebacterineae cell envelope comprises an asymmetric outer membrane that overlays the arabinogalactan-peptidoglycan complex and the inner cell membrane. Dissection of the lipid composition of the inner and outer membrane fractions is important for understanding the biogenesis of this multilaminate wall structure. Here, we have undertaken the first high-resolution analysis of C. glutamicum inner and outer membrane lipids. We identified 28 lipid (sub)classes (>233 molecular species), including new subclasses of acylated/acetylated trehalose mono/dicorynomycolic acids, using high-resolution LC/MS/MS coupled with mass spectral library searches in MS-DIAL. All lipid subclasses exhibited polarized distributions across the inner and outer membrane fractions generated by differential solvent extraction. Strikingly, deletion of the TmaT protein, which is required for transport of trehalose corynomycolates across the inner membrane, led to the accumulation of triacylglycerols in the inner membrane and to suppressed synthesis of phosphatidylglycerol and alanylated lipids. These analyses indicate unanticipated connectivity in the synthesis and/or transport of different lipid classes in C. glutamicum.
  • Item
    Thumbnail Image
    Tight Junction Protein Claudin-2 Promotes Self-Renewal of Human Colorectal Cancer Stem-like Cells
    Paquet-Fifield, S ; Koh, SL ; Cheng, L ; Beyit, LM ; Shembrey, C ; Molck, C ; Behrenbruch, C ; Papin, M ; Gironella, M ; Guelfi, S ; Nasr, R ; Grillet, F ; Prudhomme, M ; Bourgaux, J-F ; Castells, A ; Pascussi, J-M ; Heriot, AG ; Puisieux, A ; Davis, MJ ; Pannequin, J ; Hill, AF ; Sloan, EK ; Hollande, F (American Association for Cancer Research, 2018-06-01)
    Posttreatment recurrence of colorectal cancer, the third most lethal cancer worldwide, is often driven by a subpopulation of cancer stem cells (CSC). The tight junction (TJ) protein claudin-2 is overexpressed in human colorectal cancer, where it enhances cell proliferation, colony formation, and chemoresistance in vitro. While several of these biological processes are features of the CSC phenotype, a role for claudin-2 in the regulation of these has not been identified. Here, we report that elevated claudin-2 expression in stage II/III colorectal tumors is associated with poor recurrence-free survival following 5-fluorouracil–based chemotherapy, an outcome in which CSCs play an instrumental role. In patient-derived organoids, primary cells, and cell lines, claudin-2 promoted colorectal cancer self-renewal in vitro and in multiple mouse xenograft models. Claudin-2 enhanced self-renewal of ALDHHigh CSCs and increased their proportion in colorectal cancer cell populations, limiting their differentiation and promoting the phenotypic transition of non-CSCs toward the ALDHHigh phenotype. Next-generation sequencing in ALDHHigh cells revealed that claudin-2 regulated expression of nine miRNAs known to control stem cell signaling. Among these, miR-222-3p was instrumental for the regulation of self-renewal by claudin-2, and enhancement of this self-renewal required activation of YAP, most likely upstream from miR-222-3p. Taken together, our results indicate that overexpression of claudin-2 promotes self-renewal within colorectal cancer stem-like cells, suggesting a potential role for this protein as a therapeutic target in colorectal cancer.
  • Item
    Thumbnail Image
    Genetic Variants in ERAP1 and ERAP2 Associated With Immune-Mediated Diseases Influence Protein Expression and the Isoform Profile
    Hanson, AL ; Cuddihy, T ; Haynes, K ; Loo, D ; Morton, CJ ; Oppermann, U ; Leo, P ; Thomas, GP ; Kim-Anh, LC ; Kenna, TJ ; Brown, MA (WILEY, 2018-02-01)
    OBJECTIVE: Endoplasmic reticulum aminopeptidase 1 (ERAP-1) and ERAP-2, encoded on chromosome 5q15, trim endogenous peptides for HLA-mediated presentation to the immune system. Polymorphisms in ERAP1 and/or ERAP2 are strongly associated with several immune-mediated diseases with specific HLA backgrounds, implicating altered peptide handling and presentation as prerequisites for autoreactivity against an arthritogenic peptide. Given the thorough characterization of disease risk-associated polymorphisms that alter ERAP activity, this study aimed instead to interrogate the expression effect of chromosome 5q15 polymorphisms to determine their effect on ERAP isoform and protein expression. METHODS: RNA sequencing and genotyping across chromosome 5q15 were performed to detect genetic variants in ERAP1 and ERAP2 associated with altered total gene and isoform-specific expression. The functional implication of a putative messenger RNA splice-altering variant on ERAP-1 protein levels was validated using mass spectrometry. RESULTS: Polymorphisms associated with ankylosing spondylitis (AS) significantly influenced the transcript and protein expression of ERAP-1 and ERAP-2. Disease risk-associated polymorphisms in and around both genes were also associated with increased gene expression. Furthermore, key risk-associated ERAP1 variants were associated with altered transcript splicing, leading to allele-dependent alternate expression of 2 distinct isoforms and significant differences in the type of ERAP-1 protein produced. CONCLUSION: In accordance with studies demonstrating that polymorphisms that increase aminopeptidase activity predispose to immune disease, the increased risk also attributed to increased expression of ERAP1 and ERAP2 supports the notion of using aminopeptidase inhibition to treat AS and other ERAP-associated conditions.
  • Item
    Thumbnail Image
    Sustained cardiac programming by short-term juvenile exercise training in male rats
    Asif, Y ; Wlodek, ME ; Black, MJ ; Russell, AP ; Soeding, PF ; Wadley, GD (WILEY, 2018-01-15)
    KEY POINTS: Cardiac hypertrophy following endurance-training is thought to be due to hypertrophy of existing cardiomyocytes. The benefits of endurance exercise on cardiac hypertrophy are generally thought to be short-lived and regress to sedentary levels within a few weeks of stopping endurance training. We have now established that cardiomyocyte hyperplasia also plays a considerable role in cardiac growth in response to just 4 weeks of endurance exercise in juvenile (5-9 weeks of age) rats. The effect of endurance exercise on cardiomyocyte hyperplasia diminishes with age and is lost by adulthood. We have also established that the effect of juvenile exercise on heart mass is sustained into adulthood. ABSTRACT: The aim of this study was to investigate if endurance training during juvenile life 'reprogrammes' the heart and leads to sustained improvements in the structure, function, and morphology of the adult heart. Male Wistar Kyoto rats were exercise trained 5 days week-1 for 4 weeks in either juvenile (5-9 weeks of age), adolescent (11-15 weeks of age) or adult life (20-24 weeks of age). Juvenile exercise training, when compared to 24-week-old sedentary rats, led to sustained increases in left ventricle (LV) mass (+18%; P < 0.05), wall thickness (+11%; P < 0.05), the longitudinal area of binucleated cardiomyocytes (P < 0.05), cardiomyocyte number (+36%; P < 0.05), and doubled the proportion of mononucleated cardiomyocytes (P < 0.05), with a less pronounced effect of exercise during adolescent life. Adult exercise training also increased LV mass (+11%; P < 0.05), wall thickness (+6%; P < 0.05) and the longitudinal area of binucleated cardiomyocytes (P < 0.05), despite no change in cardiomyocyte number or the proportion of mono- and binucleated cardiomyocytes. Resting cardiac function, LV chamber dimensions and fibrosis levels were not altered by juvenile or adult exercise training. At 9 weeks of age, juvenile exercise significantly reduced the expression of microRNA-208b, which is a known regulator of cardiac growth, but this was not sustained to 24 weeks of age. In conclusion, juvenile exercise leads to physiological cardiac hypertrophy that is sustained into adulthood long after exercise training has ceased. Furthermore, this cardiac reprogramming is largely due to a 36% increase in cardiomyocyte number, which results in an additional 20 million cardiomyocytes in adulthood.
  • Item
    Thumbnail Image
    Renal haemodynamics and oxygenation during and after cardiac surgery and cardiopulmonary bypass
    Evans, RG ; Lankadeva, YR ; Cochrane, AD ; Marino, B ; Iguchi, N ; Zhu, MZL ; Hood, SG ; Smith, JA ; Bellomo, R ; Gardiner, BS ; Lee, C-J ; Smith, DW ; May, CN (WILEY, 2018-03-01)
    Acute kidney injury (AKI) is a common complication following cardiac surgery performed on cardiopulmonary bypass (CPB) and has important implications for prognosis. The aetiology of cardiac surgery-associated AKI is complex, but renal hypoxia, particularly in the medulla, is thought to play at least some role. There is strong evidence from studies in experimental animals, clinical observations and computational models that medullary ischaemia and hypoxia occur during CPB. There are no validated methods to monitor or improve renal oxygenation during CPB, and thus possibly decrease the risk of AKI. Attempts to reduce the incidence of AKI by early transfusion to ameliorate intra-operative anaemia, refinement of protocols for cooling and rewarming on bypass, optimization of pump flow and arterial pressure, or the use of pulsatile flow, have not been successful to date. This may in part reflect the complexity of renal oxygenation, which may limit the effectiveness of individual interventions. We propose a multi-disciplinary pathway for translation comprising three components. Firstly, large-animal models of CPB to continuously monitor both whole kidney and regional kidney perfusion and oxygenation. Secondly, computational models to obtain information that can be used to interpret the data and develop rational interventions. Thirdly, clinically feasible non-invasive methods to continuously monitor renal oxygenation in the operating theatre and to identify patients at risk of AKI. In this review, we outline the recent progress on each of these fronts.
  • Item
    Thumbnail Image
    Targeting of C-type lectin-like receptor 2 or P2Y12 for the prevention of platelet activation by immunotherapeutic CpG oligodeoxynucleotides: comment
    Flierl, U ; Nero, TL ; Lim, B ; Andrews, RK ; Parker, MW ; Gardiner, EE ; Peter, K (WILEY, 2018-01-01)
  • Item
    Thumbnail Image
    Brain-derived neurotrophic factor haploinsufficiency impairs high-frequency cortical oscillations in mice
    Jones, NC ; Hudson, M ; Foreman, J ; Rind, G ; Hill, R ; Manning, EE ; van den Buuse, M (WILEY, 2018-10-01)
    Schizophrenia is a complex psychiatric disorder with a heterogeneous aetiology involving genetic and environmental factors. Deficiencies in both brain-derived neurotrophic factor (BDNF) and NMDA receptor function have been implicated in the disorder and may play causal and synergistic roles. Perturbations in the regulation of electrophysiological signals, including high-frequency (γ: 30-80 Hz and β: 20-30 Hz) neuronal oscillations, are also associated with the disorder. This study investigated the influence of BDNF deficiency and NMDA receptor hypofunction on electrophysiological responses to brief acoustic stimuli. Adult BDNF heterozygote (BDNF+/- ) and wild-type littermate C57Bl/6J mice were surgically implanted with EEG recording electrodes. All mice underwent EEG recording sessions to measure ongoing and auditory-evoked electrophysiological responses following treatment with MK-801 (0.3 mg/kg ip) or vehicle. Western blotting on post-mortem cortical tissue assessed parvalbumin and GAD67 expression - markers of interneurons which are involved in the generation of gamma oscillations. Compared with wild-type controls, BDNF+/- mice exhibited markedly dampened electrophysiological responses to auditory stimuli, including reductions in the amplitude of multiple components of the event-related potential and auditory-evoked oscillations, as well as reduced ongoing cortical gamma oscillations. MK-801 elevated ongoing gamma power but suppressed evoked gamma power, and this was observed equally across genotypes. BDNF+/- mice also displayed reductions in parvalbumin, but not GAD67 expression. We conclude that reduced BDNF expression leads to impairments in the generation of high-frequency neural oscillations, but this is not synergistic with NMDA receptor hypofunction. Reduced parvalbumin expression associated with BDNF haploinsufficiency may provide a molecular explanation for these electrophysiological deficits.