Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    The structure of the extracellular domains of human interleukin 11? receptor reveals mechanisms of cytokine engagement
    Metcalfe, RD ; Aizel, K ; Zlatic, CO ; Nguyen, PM ; Morton, CJ ; Lio, DS-S ; Cheng, H-C ; Dobson, RCJ ; Parker, MW ; Gooley, PR ; Putoczki, TL ; Griffin, MDW (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2020-06-12)
    Interleukin (IL) 11 activates multiple intracellular signaling pathways by forming a complex with its cell surface α-receptor, IL-11Rα, and the β-subunit receptor, gp130. Dysregulated IL-11 signaling has been implicated in several diseases, including some cancers and fibrosis. Mutations in IL-11Rα that reduce signaling are also associated with hereditary cranial malformations. Here we present the first crystal structure of the extracellular domains of human IL-11Rα and a structure of human IL-11 that reveals previously unresolved detail. Disease-associated mutations in IL-11Rα are generally distal to putative ligand-binding sites. Molecular dynamics simulations showed that specific mutations destabilize IL-11Rα and may have indirect effects on the cytokine-binding region. We show that IL-11 and IL-11Rα form a 1:1 complex with nanomolar affinity and present a model of the complex. Our results suggest that the thermodynamic and structural mechanisms of complex formation between IL-11 and IL-11Rα differ substantially from those previously reported for similar cytokines. This work reveals key determinants of the engagement of IL-11 by IL-11Rα that may be exploited in the development of strategies to modulate formation of the IL-11-IL-11Rα complex.
  • Item
    Thumbnail Image
    On the structure and function of Escherichia coli YjhC: An oxidoreductase involved in bacterial sialic acid metabolism
    Horne, CR ; Kind, L ; Davies, JS ; Dobson, RCJ (WILEY, 2020-05)
    Human pathogenic and commensal bacteria have evolved the ability to scavenge host-derived sialic acids and subsequently degrade them as a source of nutrition. Expression of the Escherichia coli yjhBC operon is controlled by the repressor protein nanR, which regulates the core machinery responsible for the import and catabolic processing of sialic acid. The role of the yjhBC encoded proteins is not known-here, we demonstrate that the enzyme YjhC is an oxidoreductase/dehydrogenase involved in bacterial sialic acid degradation. First, we demonstrate in vivo using knockout experiments that YjhC is broadly involved in carbohydrate metabolism, including that of N-acetyl-d-glucosamine, N-acetyl-d-galactosamine and N-acetylneuraminic acid. Differential scanning fluorimetry demonstrates that YjhC binds N-acetylneuraminic acid and its lactone variant, along with NAD(H), which is consistent with its role as an oxidoreductase. Next, we solved the crystal structure of YjhC in complex with the NAD(H) cofactor to 1.35 Å resolution. The protein fold belongs to the Gfo/Idh/MocA protein family. The dimeric assembly observed in the crystal form is confirmed through solution studies. Ensemble refinement reveals a flexible loop region that may play a key role during catalysis, providing essential contacts to stabilize the substrate-a unique feature to YjhC among closely related structures. Guided by the structure, in silico docking experiments support the binding of sialic acid and several common derivatives in the binding pocket, which has an overall positive charge distribution. Taken together, our results verify the role of YjhC as a bona fide oxidoreductase/dehydrogenase and provide the first evidence to support its involvement in sialic acid metabolism.
  • Item
    No Preview Available
    Stemming the tide of antibiotic resistance by exploiting bacteriophages
    Love, MJ ; Dobson, RCJ ; Billington, C (Portland Press Ltd., 2020-01-01)
    The growing prevalence of antibiotic resistance is a global crisis. It is predicted that by 2050, antibiotic resistance-related deaths will exceed by 10 million per year. Thus, there is an urgent need for alternative strategies that can either replace or supplement antibiotic use. Bacteriophages and their encoded lytic proteins, called endolysins, have both shown promise as antibiotic alternatives. Bacteriophages were first investigated as therapeutics nearly a century ago, but the success of antibiotics led to phage therapy being largely abandoned in Western medicine until recently. While sporadic reports of life-saving successes in the ad hoc use of phage therapy have emerged, properly designed, robust clinical trials and clear regulatory guidelines are required before the true potential of phage therapy can be realized. In addition, despite endolysin research still being in its infancy, the early successes of endolysin-based therapeutics already entering clinical trials are an exciting glimpse into the future. No stone can be left unturned in the discovery and development of novel therapeutics if we are to ensure a future supply of effective treatments for bacterial infections.
  • Item
    No Preview Available
    Structure and Function of N-Acetylmannosamine Kinases from Pathogenic Bacteria
    Setty, TG ; Sarkar, A ; Coombes, D ; Dobson, RCJ ; Subramanian, R (AMER CHEMICAL SOC, 2020-12-08)
    Several pathogenic bacteria import and catabolize sialic acids as a source of carbon and nitrogen. Within the sialic acid catabolic pathway, the enzyme N-acetylmannosamine kinase (NanK) catalyzes the phosphorylation of N-acetylmannosamine to N-acetylmannosamine-6-phosphate. This kinase belongs to the ROK superfamily of enzymes, which generally contain a conserved zinc-finger (ZnF) motif that is important for their structure and function. Previous structural studies have shown that the ZnF motif is absent in NanK of Fusobacterium nucleatum (Fn-NanK), a Gram-negative bacterium that causes the gum disease gingivitis. However, the effect in loss of the ZnF motif on the kinase activity is unknown. Using kinetic and thermodynamic studies, we have studied the functional properties of Fn-NanK to its substrates ManNAc and ATP, compared its activity with other ZnF motif-containing NanK enzymes from closely related Gram-negative pathogenic bacteria Haemophilus influenzae (Hi-NanK), Pasteurella multocida (Pm-NanK), and Vibrio cholerae (Vc-NanK). Our studies show a 10-fold decrease in substrate binding affinity between Fn-NanK (apparent KM ≈ 700 μM) and ZnF motif-containing NanKs (apparent KM ≈ 60 μM). To understand the structural features that combat the loss of the ZnF motif in Fn-NanK, we solved the crystal structures of functionally homologous ZnF motif-containing NanKs from P. multocida and H. influenzae. Here, we report Pm-NanK:unliganded, Pm-NanK:AMPPNP, Pm-NanK:ManNAc, Hi-NanK:ManNAc, and Hi-NanK:ManNAc-6P:ADP crystal structures. Structural comparisons of Fn-NanK with Hi-NanK, Pm-NanK, and hMNK (human N-acetylmannosamine kinase domain of UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase, GNE) show that even though there is less sequence identity, they have high degree of structural similarity. Furthermore, our structural analyses highlight that the ZnF motif of Fn-NanK is substituted by a set of hydrophobic residues, which forms a hydrophobic cluster that helps the proper orientation of ManNac in the active site. In summary, ZnF-containing and ZnF-lacking NanK enzymes from different Gram-negative pathogenic bacteria are functionally very similar but differ in their metal requirement. Our structural studies unveil the structural modifications in Fn-NanK that compensate the loss of the ZnF motif in comparison to other NanK enzymes.
  • Item
    Thumbnail Image
    Comparative Molecular Dynamics Simulations Provide Insight Into Antibiotic Interactions: A Case Study Using the Enzyme L,L-Diaminopimelate Aminotransferase (DapL)
    Adams, LE ; Rynkiewicz, P ; Babbitt, GA ; Mortensen, JS ; North, RA ; Dobson, RCJ ; Hudson, AO (FRONTIERS MEDIA SA, 2020-03-24)
    The L,L-diaminopimelate aminotransferase (DapL) pathway, a recently discovered variant of the lysine biosynthetic pathway, is an attractive pipeline to identify targets for the development of novel antibiotic compounds. DapL is a homodimer that catalyzes the conversion of tetrahydrodipicolinate to L,L-diaminopimelate in a single transamination reaction. The penultimate and ultimate products of the lysine biosynthesis pathway, meso-diaminopimelate and lysine, are key components of the Gram-negative and Gram-positive bacterial peptidoglycan cell wall. Humans are not able to synthesize lysine, and DapL has been identified in 13% of bacteria whose genomes have been sequenced and annotated to date, thus it is an attractive target for the development of narrow spectrum antibiotics through the prevention of both lysine biosynthesis and peptidoglycan crosslinking. To address the common lack of structural information when conducting compound screening experiments and provide support for the use of modeled structures, our analyses utilized inferred structures from related homologous enzymes. Using a comprehensive and comparative molecular dynamics (MD) software package-DROIDS (Detecting Relative Outlier Impacts in Dynamic Simulations) 2.0, we investigated the binding dynamics of four previously identified antagonistic ligands of DapL from Verrucomicrobium spinosum, a non-pathogenic relative of Chlamydia trachomatis. Here, we present putative docking positions of the four ligands and provide confirmatory comparative molecular dynamics simulations supporting the conformations. The simulations performed in this study can be applied to evaluate putative targets to predict compound effectiveness prior to in vivo and in vitro experimentation. Moreover, this approach has the potential to streamline the process of antibiotic development.