Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    Thumbnail Image
    Untargeted metabolomics to evaluate polymyxin B toxicodynamics following direct intracerebroventricular administration into the rat brain
    Hussein, M ; Oberrauch, S ; Allobawi, R ; Cornthwaite-Duncan, L ; Lu, J ; Sharma, R ; Baker, M ; Li, J ; Rao, GG ; Velkov, T (ELSEVIER, 2022)
    There is a dearth of studies focused on understanding pharmacokinetics, pharmacodynamics and toxicodynamics of polymyxins following direct administration to the central nervous system (CNS). In this study, for the first time, untargeted metabolomics were employed to ascertain the perturbations of brain metabolism in the rat cerebral cortex following direct brain injection of 0.75 mg/kg polymyxin B (1 and 4 h) through the right lateral ventricle. In the right cortex metabolome, ICV polymyxin B induced a greater perturbation at 1 h compared to negligible effect at 4 h. Pathway enrichment analysis showed that sphingolipid, arginine, and histidine metabolism, together with aminoacyl-tRNA biosynthesis were significantly affected in the right cortex metabolome. Furthermore, intracerebroventricular (ICV) polymyxin B dysregulated the two arms (CDP-choline and CDP-ethanolamine) of the Kennedy pathway that governs the de novo biosynthesis of neuronal phospholipids. Importantly, the key intermediates of metabolic pathways that maintain cellular redox balance (e.g., glutathione metabolism) and mitochondrial function (e.g., electron transport chain) were markedly depleted. The abundance of key metabolites (e.g., N-acetyl-l-glutamate) associated with diverse CNS disorders (e.g., neurodegenerative disease) were also significantly perturbed. The biological significance of these metabolic perturbations on the CNS includes impaired oxidant-antioxidant balance, impaired neuronal lipid homeostasis and mitochondrial dysfunction. Furthermore, ICV polymyxin B caused a significant alteration in the abundance of several metabolic biomarkers associated with cerebral ischemia, oxidative stress as well as certain neurological disorders. These findings may facilitate the development of new pharmacokinetic/pharmacodynamic strategies to attenuate polymyxins ICV related CNS toxicities and stimulate the discovery of safer next-generation polymyxin-like lipopeptide antibiotics.
  • Item
    Thumbnail Image
    Drug Repurposing Approaches towards Defeating Multidrug-Resistant Gram-Negative Pathogens: Novel Polymyxin/Non-Antibiotic Combinations
    Jie, AKJ ; Hussein, M ; Rao, GGG ; Li, J ; Velkov, T (MDPI, 2022-12)
    Multidrug-resistant (MDR) Gram-negative pathogens remain an unmet public health threat. In recent times, increased rates of resistance have been reported not only to commonly used antibiotics, but also to the last-resort antibiotics, such as polymyxins. More worryingly, despite the current trends in resistance, there is a lack of new antibiotics in the drug-discovery pipeline. Hence, it is imperative that new strategies are developed to preserve the clinical efficacy of the current antibiotics, particularly the last-line agents. Combining conventional antibiotics such as polymyxins with non-antibiotics (or adjuvants), has emerged as a novel and effective strategy against otherwise untreatable MDR pathogens. This review explores the available literature detailing the latest polymyxin/non-antibiotic combinations, their mechanisms of action, and potential avenues to advance their clinical application.
  • Item
    Thumbnail Image
    Integrated metabolomic and transcriptomic analyses of the synergistic effect of polymyxin-rifampicin combination against Pseudomonas aeruginosa
    Maifiah, MHM ; Zhu, Y ; Tsuji, BT ; Creek, DJ ; Velkov, T ; Li, J (BMC, 2022-10-30)
    BACKGROUND: Understanding the mechanism of antimicrobial action is critical for improving antibiotic therapy. For the first time, we integrated correlative metabolomics and transcriptomics of Pseudomonas aeruginosa to elucidate the mechanism of synergistic killing of polymyxin-rifampicin combination. METHODS: Liquid chromatography-mass spectrometry and RNA-seq analyses were conducted to identify the significant changes in the metabolome and transcriptome of P. aeruginosa PAO1 after exposure to polymyxin B (1 mg/L) and rifampicin (2 mg/L) alone, or in combination over 24 h. A genome-scale metabolic network was employed for integrative analysis. RESULTS: In the first 4-h treatment, polymyxin B monotherapy induced significant lipid perturbations, predominantly to fatty acids and glycerophospholipids, indicating a substantial disorganization of the bacterial outer membrane. Expression of ParRS, a two-component regulatory system involved in polymyxin resistance, was increased by polymyxin B alone. Rifampicin alone caused marginal metabolic perturbations but significantly affected gene expression at 24 h. The combination decreased the gene expression of quorum sensing regulated virulence factors at 1 h (e.g. key genes involved in phenazine biosynthesis, secretion system and biofilm formation); and increased the expression of peptidoglycan biosynthesis genes at 4 h. Notably, the combination caused substantial accumulation of nucleotides and amino acids that last at least 4 h, indicating that bacterial cells were in a state of metabolic arrest. CONCLUSION: This study underscores the substantial potential of integrative systems pharmacology to determine mechanisms of synergistic bacterial killing by antibiotic combinations, which will help optimize their use in patients.
  • Item
    Thumbnail Image
    Inwardly rectifying potassium channels mediate polymyxin-induced nephrotoxicity
    Lu, J ; Azad, MAK ; Moreau, JLM ; Zhu, Y ; Jiang, X ; Tonta, M ; Lam, R ; Wickremasinghe, H ; Zhao, J ; Wang, J ; Coleman, HA ; Formosa, LE ; Velkov, T ; Parkington, HC ; Combes, AN ; Rosenbluh, J ; Li, J (SPRINGER BASEL AG, 2022-06)
    Polymyxin antibiotics are often used as a last-line defense to treat life-threatening Gram-negative pathogens. However, polymyxin-induced kidney toxicity is a dose-limiting factor of paramount importance and can lead to suboptimal treatment. To elucidate the mechanism and develop effective strategies to overcome polymyxin toxicity, we employed a whole-genome CRISPR screen in human kidney tubular HK-2 cells and identified 86 significant genes that upon knock-out rescued polymyxin-induced toxicity. Specifically, we discovered that knockout of the inwardly rectifying potassium channels Kir4.2 and Kir5.1 (encoded by KCNJ15 and KCNJ16, respectively) rescued polymyxin-induced toxicity in HK-2 cells. Furthermore, we found that polymyxins induced cell depolarization via Kir4.2 and Kir5.1 and a significant cellular uptake of polymyxins was evident. All-atom molecular dynamics simulations revealed that polymyxin B1 spontaneously bound to Kir4.2, thereby increasing opening of the channel, resulting in a potassium influx, and changes of the membrane potential. Consistent with these findings, small molecule inhibitors (BaCl2 and VU0134992) of Kir potassium channels reduced polymyxin-induced toxicity in cell culture and mouse explant kidney tissue. Our findings provide critical mechanistic information that will help attenuate polymyxin-induced nephrotoxicity in patients and facilitate the design of novel, safer polymyxins.
  • Item
    Thumbnail Image
    Mechanisms Underlying Synergistic Killing of Polymyxin B in Combination with Cannabidiol against Acinetobacter baumannii: A Metabolomic Study
    Hussein, M ; Allobawi, R ; Levou, I ; Blaskovich, MAT ; Rao, GG ; Li, J ; Velkov, T (MDPI, 2022-04)
    Polymyxins have resurged as the last-resort antibiotics against multidrug-resistant Acinetobacter baumannii. As reports of polymyxin resistance in A. baumannii with monotherapy have become increasingly common, combination therapy is usually the only remaining treatment option. A novel and effective strategy is to combine polymyxins with non-antibiotic drugs. This study aimed to investigate, using untargeted metabolomics, the mechanisms of antibacterial killing synergy of the combination of polymyxin B with a synthetic cannabidiol against A. baumannii ATCC 19606. The antibacterial synergy of the combination against a panel of Gram-negative pathogens (Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa) was also explored using checkerboard and static time-kill assays. The polymyxin B-cannabidiol combination showed synergistic antibacterial activity in checkerboard and static time-kill assays against both polymyxin-susceptible and polymyxin-resistant isolates. The metabolomics study at 1 h demonstrated that polymyxin B monotherapy and the combination (to the greatest extent) significantly perturbed the complex interrelated metabolic pathways involved in the bacterial cell envelope biogenesis (amino sugar and nucleotide sugar metabolism, peptidoglycan, and lipopolysaccharide (LPS) biosynthesis), nucleotides (purine and pyrimidine metabolism) and peptide metabolism; notably, these pathways are key regulators of bacterial DNA and RNA biosynthesis. Intriguingly, the combination caused a major perturbation in bacterial membrane lipids (glycerophospholipids and fatty acids) compared to very minimal changes induced by monotherapies. At 4 h, polymyxin B-cannabidiol induced more pronounced effects on the abovementioned pathways compared to the minimal impact of monotherapies. This metabolomics study for the first time showed that in disorganization of the bacterial envelope formation, the DNA and RNA biosynthetic pathways were the most likely molecular mechanisms for the synergy of the combination. The study suggests the possibility of cannabidiol repositioning, in combination with polymyxins, for treatment of MDR polymyxin-resistant Gram-negative infections.
  • Item
    Thumbnail Image
    An Efficient Approach for the Design and Synthesis of Antimicrobial Peptide-Peptide Nucleic Acid Conjugates
    Patil, NA ; Thombare, VJ ; Li, R ; He, X ; Lu, J ; Yu, HH ; Wickremasinghe, H ; Pamulapati, K ; Azad, MAK ; Velkov, T ; Roberts, KD ; Li, J (FRONTIERS MEDIA SA, 2022-03-15)
    Peptide-Peptide Nucleic Acid (PNA) conjugates targeting essential bacterial genes have shown significant potential in developing novel antisense antimicrobials. The majority of efforts in this area are focused on identifying different PNA targets and the selection of peptides to deliver the peptide-PNA conjugates to Gram-negative bacteria. Notably, the selection of a linkage strategy to form peptide-PNA conjugate plays an important role in the effective delivery of PNAs. Recently, a unique Cysteine- 2-Cyanoisonicotinamide (Cys-CINA) click chemistry has been employed for the synthesis of cyclic peptides. Considering the high selectivity of this chemistry, we investigated the efficiency of Cys-CINA conjugation to synthesize novel antimicrobial peptide-PNA conjugates. The PNA targeting acyl carrier protein gene (acpP), when conjugated to the membrane-active antimicrobial peptides (polymyxin), showed improvement in antimicrobial activity against multidrug-resistant Gram-negative Acinetobacter baumannii. Thus, indicating that the Cys-CINA conjugation is an effective strategy to link the antisense oligonucleotides with antimicrobial peptides. Therefore, the Cys-CINA conjugation opens an exciting prospect for antimicrobial drug development.
  • Item
    Thumbnail Image
    A synthetic lipopeptide targeting top-priority multidrug-resistant Gram-negative pathogens
    Roberts, KD ; Zhu, Y ; Azad, MAK ; Han, M-L ; Wang, J ; Wang, L ; Yu, HH ; Horne, AS ; Pinson, J-A ; Rudd, D ; Voelcker, NH ; Patil, NA ; Zhao, J ; Jiang, X ; Lu, J ; Chen, K ; Lomovskaya, O ; Hecker, SJ ; Thompson, PE ; Nation, RL ; Dudley, MN ; Griffith, DC ; Velkov, T ; Li, J (NATURE PORTFOLIO, 2022-03-25)
    The emergence of multidrug-resistant (MDR) Gram-negative pathogens is an urgent global medical challenge. The old polymyxin lipopeptide antibiotics (polymyxin B and colistin) are often the only therapeutic option due to resistance to all other classes of antibiotics and the lean antibiotic drug development pipeline. However, polymyxin B and colistin suffer from major issues in safety (dose-limiting nephrotoxicity, acute toxicity), pharmacokinetics (poor exposure in the lungs) and efficacy (negligible activity against pulmonary infections) that have severely limited their clinical utility. Here we employ chemical biology to systematically optimize multiple non-conserved positions in the polymyxin scaffold, and successfully disconnect the therapeutic efficacy from the toxicity to develop a new synthetic lipopeptide, structurally and pharmacologically distinct from polymyxin B and colistin. This resulted in the clinical candidate F365 (QPX9003) with superior safety and efficacy against lung infections caused by top-priority MDR pathogens Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae.
  • Item
    Thumbnail Image
    Correlative proteomics identify the key roles of stress tolerance strategies in Acinetobacter baumannii in response to polymyxin and human macrophages
    Kho, ZY ; Azad, MAK ; Han, M-L ; Zhu, Y ; Huang, C ; Schittenhelm, RB ; Naderer, T ; Velkov, T ; Selkrig, J ; Zhou, QT ; Li, J ; Knodler, L (PUBLIC LIBRARY SCIENCE, 2022-03)
    The opportunistic pathogen Acinetobacter baumannii possesses stress tolerance strategies against host innate immunity and antibiotic killing. However, how the host-pathogen-antibiotic interaction affects the overall molecular regulation of bacterial pathogenesis and host response remains unexplored. Here, we simultaneously investigate proteomic changes in A. baumannii and macrophages following infection in the absence or presence of the polymyxins. We discover that macrophages and polymyxins exhibit complementary effects to disarm several stress tolerance and survival strategies in A. baumannii, including oxidative stress resistance, copper tolerance, bacterial iron acquisition and stringent response regulation systems. Using the spoT mutant strains, we demonstrate that bacterial cells with defects in stringent response exhibit enhanced susceptibility to polymyxin killing and reduced survival in infected mice, compared to the wild-type strain. Together, our findings highlight that better understanding of host-pathogen-antibiotic interplay is critical for optimization of antibiotic use in patients and the discovery of new antimicrobial strategy to tackle multidrug-resistant bacterial infections.
  • Item
    Thumbnail Image
    Unique mechanistic insights into pathways associated with the synergistic activity of polymyxin B and caspofungin against multidrug- resistant Klebsiella pneumoniae
    Hussein, M ; Wong, LJM ; Zhao, J ; Rees, VE ; Allobawi, R ; Sharma, R ; Rao, GG ; Baker, M ; Li, J ; Velkov, T (ELSEVIER, 2022)
    Klebsiella pneumoniae is an opportunistic Gram-negative pathogen causing nosocomial infections. K. pneumoniae rapidly acquires antibiotic resistance and is known as a reservoir for resistance genes. Polymyxins remain effective as a last-line therapy against infections caused by multidrug-resistant (MDR) K. pneumoniae; however, resistance to polymyxins emerges rapidly with monotherapy. Synergistic combinations of polymyxins with FDA-approved non-antibiotics are a novel approach to preserve its efficacy whilst minimising the emergence of polymyxin resistance in K. pneumoniae. This study aimed to investigate the synergistic antibacterial activity of polymyxin B in combination with the anti-fungal caspofungin against K. pneumoniae. The combination of polymyxin B and caspofungin showed marked synergistic antibacterial killing activity in checkerboard broth microdilution and static time-kill assays at clinically relevant concentrations at early (0.5 and 1 h) and later (4 h) time points. The potential bacterial killing mechanism of the combination was studied against K. pneumoniae FADDI-KP001 using metabolomics and transcriptomics studies at 0.5, 1 and 4 h. The key pathways involved in the synergistic killing action of the combination were cell wall assembly (peptidoglycan and lipopolysaccharide biosynthesis), central carbon metabolism (glycolysis, pentose phosphate pathway and tricarboxylic acid cycle) and fatty acid biosynthesis. Moreover, the combination inhibited the most common bacterial virulence pathway (phosphotransferase system) as well as the multi-resistant efflux mechanisms, including ATP-binding cassette (ABC) transporter pathway. Overall, this study sheds light on the possibility of a polymyxin-caspofungin combination for the treatment of infections caused by K. pneumoniae and may help repurpose FDA-approved caspofungin against MDR K. pneumoniae infections.
  • Item
    Thumbnail Image
    p21 restricts influenza A virus by perturbing the viral polymerase complex and upregulating type I interferon signaling
    Ma, C ; Li, Y ; Zong, Y ; Velkov, T ; Wang, C ; Yang, X ; Zhang, M ; Jiang, Z ; Sun, H ; Tong, Q ; Sun, H ; Pu, J ; Iqbal, M ; Liu, J ; Dai, C ; Sun, Y ; Fernandez-Sesma, A (PUBLIC LIBRARY SCIENCE, 2022-02)
    Many cellular genes and networks induced in human lung epithelial cells infected with the influenza virus remain uncharacterized. Here, we find that p21 levels are elevated in response to influenza A virus (IAV) infection, which is independent of p53. Silencing, pharmacological inhibition or deletion of p21 promotes virus replication in vitro and in vivo, indicating that p21 is an influenza restriction factor. Mechanistically, p21 binds to the C-terminus of IAV polymerase subunit PA and competes with PB1 to limit IAV polymerase activity. Besides, p21 promotes IRF3 activation by blocking K48-linked ubiquitination degradation of HO-1 to enhance type I interferons expression. Furthermore, a synthetic p21 peptide (amino acids 36 to 43) significantly inhibits IAV replication in vitro and in vivo. Collectively, our findings reveal that p21 restricts IAV by perturbing the viral polymerase complex and activating the host innate immune response, which may aid the design of desperately needed new antiviral therapeutics.