Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 102
  • Item
    Thumbnail Image
    Molecular Characterization of Lipopolysaccharide Binding to Human alpha-1-Acid Glycoprotein
    Huang, JX ; Azad, MAK ; Yuriev, E ; Baker, MA ; Nation, RL ; Li, J ; Cooper, MA ; Velkov, T (HINDAWI LTD, 2012-01-01)
    The ability of AGP to bind circulating lipopolysaccharide (LPS) in plasma is believed to help reduce the proinflammatory effect of bacterial lipid A molecules. Here, for the first time we have characterized human AGP binding characteristics of the LPS from a number of pathogenic Gram-negative bacteria: Escherichia coli, Salmonella typhimurium, Klebsiella pneumonia, Pseudomonas aeruginosa, and Serratia marcescens. The binding affinity and structure activity relationships (SAR) of the AGP-LPS interactions were characterized by surface plasma resonance (SPR). In order to dissect the contribution of the lipid A, core oligosaccharide and O-antigen polysaccharide components of LPS, the AGP binding affinity of LPS from smooth strains, were compared to lipid A, Kdo2-lipid A, R(a), R(d), and R(e) rough LPS mutants. The SAR analysis enabled by the binding data suggested that, in addition to the important role played by the lipid A and core components of LPS, it is predominately the unique species- and strain-specific carbohydrate structure of the O-antigen polysaccharide that largely determines the binding affinity for AGP. Together, these data are consistent with the role of AGP in the binding and transport of LPS in plasma during acute-phase inflammatory responses to invading Gram-negative bacteria.
  • Item
    Thumbnail Image
    Full-length structural model of RET3 and SEC21 in COPI: identification of binding sites on the appendage for accessory protein recruitment motifs
    Alisaraie, L ; Rouiller, I (SPRINGER, 2012-07-01)
    COPI, a 600 kD heptameric complex (consisting of subunits α, β, γ, δ, ε, ζ, and β') "coatomer," assembles non-clathrin-coated vesicles and is responsible for intra-Golgi and Golgi-to-ER protein trafficking. Here, we report the three-dimensional structures of the entire sequences of yeast Sec21 (γ-COPI mammalian ortholog), yeast Ret3 (ζ-COPI mammalian ortholog), and the results of successive molecular dynamics investigations of the subunits and assembly based on a protein-protein docking experiment. The three-dimensional structures of the subunits in their complexes indicate the residues of the two subunits that impact on assembly, the conformations of Ret3 and Sec21, and their binding orientations in the complexed state. The structure of the appendage domain of Sec21, with its two subdomains--the platform and the β-sandwich, was investigated to explore its capacity to bind to accessory protein recruitment motifs. Our study shows that a binding site on the platform is capable of binding the Eps15 DPF and epsin DPW2 peptides, whereas the second site on the platform and the site on the β-sandwich subdomain were found to selectively bind to the amphiphysin FXDXF and epsin DPW1 peptides, respectively. Identifying the regions of both the platform and sandwich subdomains involved in binding each peptide motif clarifies the mechanism through which the appendage domain of Sec21 engages with the accessory proteins during the trafficking process of non-clathrin-coated vesicles.
  • Item
    Thumbnail Image
    Complexity and developmental changes in the expression pattern of claudins at the blood-CSF barrier
    Kratzer, I ; Vasiljevic, A ; Rey, C ; Fevre-Montange, M ; Saunders, N ; Strazielle, N ; Ghersi-Egea, J-F (SPRINGER, 2012-12-01)
    The choroid plexus epithelium controls the movement of solutes between the blood and the cerebrospinal fluid. It has been considered as a functionally more immature interface during brain development than in adult. The anatomical basis of this barrier is the interepithelial choroidal junction whose tightness has been attributed to the presence of claudins. We used quantitative real-time polymerase chain reaction, Western blot and immunohistochemistry to identify different claudins in the choroid plexuses of developing and adult rats. Claudin-1, -2, and -3 were highly and selectively expressed in the choroid plexus as compared to brain or parenchyma microvessels and were localized at epithelial junctions. Claudin-6, -9, -19, and -22 also displayed a previously undescribed choroidal selectivity, while claudin-4, -5, and -16 were enriched in the cerebral microvessels. The choroidal pattern of tight junction protein expression in prenatal brains was already complex and included occludin and zonula occludens proteins. It differed from the adult pattern in that the pore-forming claudin-2, claudin-9, and claudin-22 increased during development, while claudin-3 and claudin-6 decreased. Claudin-2 and claudin-11 presented a mirror image of abundance between lateral ventricle and fourth ventricle choroid plexuses. Imunohistochemical analysis of human fetal and postnatal brains for claudin-1, -2, and -3 demonstrated their early presence and localization at the apico-lateral border of the choroid plexus epithelial cells. Overall, choroidal epithelial tight junctions are already complex in developing brain. The observed differences in claudin expression between developing and adult choroid plexuses may indicate developmental differences in selective blood-cerebrospinal fluid transport functions.
  • Item
    Thumbnail Image
    Assigning a function to a conserved archaeal metallo-beta-lactamase from Haloferax volcanii
    Fischer, S ; von Freyend, SJ ; Sabag-Daigle, A ; Daniels, CJ ; Allers, T ; Marchfelder, A (SPRINGER JAPAN KK, 2012-03-01)
    The metallo-β-lactamase family of enzymes comprises a large group of proteins with diverse functions in the metabolism of the cell. Among others, this superfamily contains proteins which are involved in DNA and RNA metabolism, acting as nucleases in e.g. repair and maturation. Many proteins have been annotated in prokaryotic genomes as being potential metallo-β-lactamases, but very often the function has not been proven. The protein HVO_2763 from Haloferax volcanii is such a potential metallo-β-lactamase. HVO_2763 has sequence similarity to the metallo-β-lactamase tRNase Z, a tRNA 3' processing endonuclease. Here, we report the characterisation of this metallo-β-lactamase HVO_2763 in the halophilic archaeon Haloferax volcanii. Using different in vitro assays with the recombinant HVO_2763, we could show that the protein does not have tRNA 3' processing or exonuclease activity. According to transcriptome analyses of the HVO_2763 deletion strain, expression of proteins involved in membrane transport is downregulated in the mutant. Therefore, HVO_2763 might be involved directly or indirectly in membrane transport.
  • Item
    No Preview Available
    Role of mitochondrial inner membrane organizing system in protein biogenesis of the mitochondrial outer membrane
    Bohnert, M ; Wenz, L-S ; Zerbes, RM ; Horvath, SE ; Stroud, DA ; von der Malsburg, K ; Mueller, JM ; Oeljeklaus, S ; Perschil, I ; Warscheid, B ; Chacinska, A ; Veenhuis, M ; van der Klei, IJ ; Daum, G ; Wiedemann, N ; Becker, T ; Pfanner, N ; van der Laan, M ; Glick, BS (AMER SOC CELL BIOLOGY, 2012-10-15)
    Mitochondria contain two membranes, the outer membrane and the inner membrane with folded cristae. The mitochondrial inner membrane organizing system (MINOS) is a large protein complex required for maintaining inner membrane architecture. MINOS interacts with both preprotein transport machineries of the outer membrane, the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It is unknown, however, whether MINOS plays a role in the biogenesis of outer membrane proteins. We have dissected the interaction of MINOS with TOM and SAM and report that MINOS binds to both translocases independently. MINOS binds to the SAM complex via the conserved polypeptide transport-associated domain of Sam50. Mitochondria lacking mitofilin, the large core subunit of MINOS, are impaired in the biogenesis of β-barrel proteins of the outer membrane, whereas mutant mitochondria lacking any of the other five MINOS subunits import β-barrel proteins in a manner similar to wild-type mitochondria. We show that mitofilin is required at an early stage of β-barrel biogenesis that includes the initial translocation through the TOM complex. We conclude that MINOS interacts with TOM and SAM independently and that the core subunit mitofilin is involved in biogenesis of outer membrane β-barrel proteins.
  • Item
    No Preview Available
    Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe
    Holt, KE ; Baker, S ; Weill, F-X ; Holmes, EC ; Kitchen, A ; Yu, J ; Sangal, V ; Brown, DJ ; Coia, JE ; Kim, DW ; Choi, SY ; Kim, SH ; da Silveira, WD ; Pickard, DJ ; Farrar, JJ ; Parkhill, J ; Dougan, G ; Thomson, NR (NATURE PUBLISHING GROUP, 2012-09-01)
    Shigella are human-adapted Escherichia coli that have gained the ability to invade the human gut mucosa and cause dysentery(1,2), spreading efficiently via low-dose fecal-oral transmission(3,4). Historically, S. sonnei has been predominantly responsible for dysentery in developed countries but is now emerging as a problem in the developing world, seeming to replace the more diverse Shigella flexneri in areas undergoing economic development and improvements in water quality(4-6). Classical approaches have shown that S. sonnei is genetically conserved and clonal(7). We report here whole-genome sequencing of 132 globally distributed isolates. Our phylogenetic analysis shows that the current S. sonnei population descends from a common ancestor that existed less than 500 years ago and that diversified into several distinct lineages with unique characteristics. Our analysis suggests that the majority of this diversification occurred in Europe and was followed by more recent establishment of local pathogen populations on other continents, predominantly due to the pandemic spread of a single, rapidly evolving, multidrug-resistant lineage.
  • Item
    Thumbnail Image
    Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation
    Kalra, H ; Simpson, RJ ; Ji, H ; Aikawa, E ; Altevogt, P ; Askenase, P ; Bond, VC ; Borras, FE ; Breakefield, X ; Budnik, V ; Buzas, E ; Camussi, G ; Clayton, A ; Cocucci, E ; Falcon-Perez, JM ; Gabrielsson, S ; Gho, YS ; Gupta, D ; Harsha, HC ; Hendrix, A ; Hill, AF ; Inal, JM ; Jenster, G ; Kraemer-Albers, E-M ; Lim, SK ; Llorente, A ; Lotvall, J ; Marcilla, A ; Mincheva-Nilsson, L ; Nazarenko, I ; Nieuwland, R ; Nolte-'t Hoen, ENM ; Pandey, A ; Patel, T ; Piper, MG ; Pluchino, S ; Prasad, TSK ; Rajendran, L ; Raposo, G ; Record, M ; Reid, GE ; Sanchez-Madrid, F ; Schiffelers, RM ; Siljander, P ; Stensballe, A ; Stoorvogel, W ; Taylor, D ; Thery, C ; Valadi, H ; van Balkom, BWM ; Vazquez, J ; Vidal, M ; Wauben, MHM ; Yanez-Mo, M ; Zoeller, M ; Mathivanan, S (PUBLIC LIBRARY SCIENCE, 2012-12-01)
    Extracellular vesicles (EVs) are membraneous vesicles released by a variety of cells into their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers. These findings have generated immense interest, along with an exponential increase in molecular data pertaining to EVs. Here, we describe Vesiclepedia, a manually curated compendium of molecular data (lipid, RNA, and protein) identified in different classes of EVs from more than 300 independent studies published over the past several years. Even though databases are indispensable resources for the scientific community, recent studies have shown that more than 50% of the databases are not regularly updated. In addition, more than 20% of the database links are inactive. To prevent such database and link decay, we have initiated a continuous community annotation project with the active involvement of EV researchers. The EV research community can set a gold standard in data sharing with Vesiclepedia, which could evolve as a primary resource for the field.
  • Item
    Thumbnail Image
    Plakophilin3 loss leads to an increase in PRL3 levels promoting K8 dephosphorylation, which is required for transformation and metastasis.
    Khapare, N ; Kundu, ST ; Sehgal, L ; Sawant, M ; Priya, R ; Gosavi, P ; Gupta, N ; Alam, H ; Karkhanis, M ; Naik, N ; Vaidya, MM ; Dalal, SN ; Gottardi, C (Public Library of Science (PLoS), 2012)
    The desmosome anchors keratin filaments in epithelial cells leading to the formation of a tissue wide IF network. Loss of the desmosomal plaque protein plakophilin3 (PKP3) in HCT116 cells, leads to an increase in neoplastic progression and metastasis, which was accompanied by an increase in K8 levels. The increase in levels was due to an increase in the protein levels of the Phosphatase of Regenerating Liver 3 (PRL3), which results in a decrease in phosphorylation on K8. The increase in PRL3 and K8 protein levels could be reversed by introduction of an shRNA resistant PKP3 cDNA. Inhibition of K8 expression in the PKP3 knockdown clone S10, led to a decrease in cell migration and lamellipodia formation. Further, the K8 PKP3 double knockdown clones showed a decrease in colony formation in soft agar and decreased tumorigenesis and metastasis in nude mice. These results suggest that a stabilisation of K8 filaments leading to an increase in migration and transformation may be one mechanism by which PKP3 loss leads to tumor progression and metastasis.
  • Item
    Thumbnail Image
    Development of Transgenic Mice Containing an Introduced Stop Codon on the Human Methylmalonyl-CoA Mutase Locus
    Buck, NE ; Dashnow, H ; Pitt, JJ ; Wood, LR ; Peters, HL ; Müller, M (PUBLIC LIBRARY SCIENCE, 2012-09-14)
    The mutation R403stop was found in an individual with mut(0) methylmalonic aciduria (MMA) which resulted from a single base change of C→T in exon 6 of the methylmalonyl-CoA mutase gene (producing a TGA stop codon). In order to accurately model the human MMA disorder we introduced this mutation onto the human methylmalonyl-CoA mutase locus of a bacterial artificial chromosome. A mouse model was developed using this construct.The transgene was found to be intact in the mouse model, with 7 copies integrated at a single site in chromosome 3. The phenotype of the hemizygous mouse was unchanged until crossed against a methylmalonyl-CoA mutase knockout mouse. Pups with no endogenous mouse methylmalonyl-CoA mutase and one copy of the transgene became ill and died within 24 hours. This severe phenotype could be partially rescued by the addition of a transgene carrying two copies of the normal human methylmalonyl-CoA mutase locus. The "humanized" mice were smaller than control litter mates and had high levels of methylmalonic acid in their blood and tissues. This new transgenic MMA stop codon model mimics (at both the phenotypic and genotypic levels) the key features of the human MMA disorder. It will allow the trialing of pharmacological and, cell and gene therapies for the treatment of MMA and other human metabolic disorders caused by stop codon mutations.
  • Item
    Thumbnail Image
    Glucocorticosteroids Differentially Regulate MMP-9 and Neutrophil Elastase in COPD
    Vlahos, R ; Wark, PAB ; Anderson, GP ; Bozinovski, S ; Hartl, D (PUBLIC LIBRARY SCIENCE, 2012-03-07)
    BACKGROUND: Chronic Obstructive Pulmonary Disease (COPD) is currently the fifth leading cause of death worldwide. Neutrophilic inflammation is prominent, worsened during infective exacerbations and is refractory to glucocorticosteroids (GCs). Deregulated neutrophilic inflammation can cause excessive matrix degradation through proteinase release. Gelatinase and azurophilic granules within neutrophils are a major source of matrix metalloproteinase (MMP)-9 and neutrophil elastase (NE), respectively, which are elevated in COPD. METHODS: Secreted MMP-9 and NE activity in BALF were stratified according to GOLD severity stages. The regulation of secreted NE and MMP-9 in isolated blood neutrophils was investigated using a pharmacological approach. In vivo release of MMP-9 and NE in mice exposed to cigarette smoke (CS) and/or the TLR agonist lipopolysaccharide (LPS) in the presence of dexamethasone (Dex) was investigated. RESULTS: Neutrophil activation as assessed by NE release was increased in severe COPD (36-fold, GOLD II vs. IV). MMP-9 levels (8-fold) and activity (21-fold) were also elevated in severe COPD, and this activity was strongly associated with BALF neutrophils (r = 0.92, p<0.001), but not macrophages (r = 0.48, p = 0.13). In vitro, release of NE and MMP-9 from fMLP stimulated blood neutrophils was insensitive to Dex and attenuated by the PI3K inhibitor, wortmannin. In vivo, GC resistant neutrophil activation (NE release) was only seen in mice exposed to CS and LPS. In addition, GC refractory MMP-9 expression was only associated with neutrophil activation. CONCLUSIONS: As neutrophils become activated with increasing COPD severity, they become an important source of NE and MMP-9 activity, which secrete proteinases independently of TIMPs. Furthermore, as NE and MMP-9 release was resistant to GC, targeting of the PI3K pathway may offer an alternative pathway to combating this proteinase imbalance in severe COPD.