Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 34
  • Item
    Thumbnail Image
    Transmission of Klebsiella strains and plasmids within and between grey-headed flying fox colonies
    Vezina, B ; Judd, LM ; McDougall, FK ; Boardman, WSJ ; Power, ML ; Hawkey, J ; Brisse, S ; Monk, JM ; Holt, KE ; Wyres, KL (WILEY, 2022-09)
    The grey-headed flying fox (Pteropus poliocephalus) is an endemic Australian fruit bat, known to carry zoonotic pathogens. We recently showed they harbour bacterial pathogen Klebsiella pneumoniae and closely related species in the K. pneumoniae species complex (KpSC); however, the dynamics of KpSC transmission and gene flow within flying fox colonies are poorly understood. High-resolution genome comparisons of 39 KpSC isolates from grey-headed flying foxes identified five putative strain transmission clusters (four intra- and one inter-colony). The instance of inter-colony strain transmission of K. africana was found between two flying fox populations within flying distance, indicating either direct or indirect transmission through a common food/water source. All 11 plasmids identified within the KpSC isolates showed 73% coverage (mean) and ≥95% identity to human-associated KpSC plasmids, indicating gene flow between human clinical and grey-headed flying fox isolates. Along with strain transmission, inter-species horizontal plasmid transmission between K. pneumoniae and Klebsiella africana was also identified within a flying fox colony. Finally, genome-scale metabolic models were generated to predict and compare substrate usage to previously published KpSC models, from human and environmental sources. These models indicated no distinction on the basis of metabolic capabilities. Instead, metabolic capabilities were consistent with population structure and ST/lineage.
  • Item
    Thumbnail Image
    ESBL plasmids in Klebsiella pneumoniae: diversity, transmission and contribution to infection burden in the hospital setting
    Hawkey, J ; Wyres, KL ; Judd, LM ; Harshegyi, T ; Blakeway, L ; Wick, RR ; Jenney, AWJ ; Holt, KE (BMC, 2022-08-23)
    BACKGROUND: Resistance to third-generation cephalosporins, often mediated by extended-spectrum beta-lactamases (ESBLs), is a considerable issue in hospital-associated infections as few drugs remain for treatment. ESBL genes are often located on large plasmids that transfer horizontally between strains and species of Enterobacteriaceae and frequently confer resistance to additional drug classes. Whilst plasmid transmission is recognised to occur in the hospital setting, the frequency and impact of plasmid transmission on infection burden, compared to ESBL + strain transmission, is not well understood. METHODS: We sequenced the genomes of clinical and carriage isolates of Klebsiella pneumoniae species complex from a year-long hospital surveillance study to investigate ESBL burden and plasmid transmission in an Australian hospital. Long-term persistence of a key transmitted ESBL + plasmid was investigated via sequencing of ceftriaxone-resistant isolates during 4 years of follow-up, beginning 3 years after the initial study. RESULTS: We found 25 distinct ESBL plasmids. We identified one plasmid, which we called Plasmid A, that carried blaCTX-M-15 in an IncF backbone similar to pKPN-307. Plasmid A was transmitted at least four times into different Klebsiella species/lineages and was responsible for half of all ESBL episodes during the initial 1-year study period. Three of the Plasmid A-positive strains persisted locally 3-6 years later, and Plasmid A was detected in two additional strain backgrounds. Overall Plasmid A accounted for 21% of ESBL + infections in the follow-up period. CONCLUSIONS: Here, we systematically surveyed ESBL strain and plasmid transmission over 1 year in a single hospital network. Whilst ESBL plasmid transmission events were rare in this setting, they had a significant and sustained impact on the burden of ceftriaxone-resistant and multidrug-resistant infections. If onward transmission of Plasmid A-carrying strains could have been prevented, this may have reduced the number of opportunities for Plasmid A to transmit and create novel ESBL + strains, as well as reducing overall ESBL infection burden.
  • Item
    Thumbnail Image
    Epidemiology and genomic analysis of Klebsiella oxytoca from a single hospital network in Australia
    Stewart, J ; Judd, LM ; Jenney, A ; Holt, KE ; Wyres, KL ; Hawkey, J (BMC, 2022-08-24)
    BACKGROUND: Infections caused by Klebsiella oxytoca are the second most common cause of Klebsiella infections in humans. Most studies have focused on K. oxytoca outbreaks and few have examined the broader clinical context of K. oxytoca. METHODS: Here, we collected all clinical isolates identified as K. oxytoca in a hospital microbiological diagnostic lab across a 15-month period (n = 239). Whole genome sequencing was performed on a subset of 92 isolates (all invasive, third-generation cephalosporin resistant (3GCR) and non-urinary isolates collected > 48 h after admission), including long-read sequencing on a further six isolates with extended-spectrum beta-lactamase or carbapenemase genes. RESULTS: The majority of isolates were sensitive to antimicrobials, however 22 isolates were 3GCR, of which five were also carbapenem resistant. Genomic analyses showed those identified as K. oxytoca by the clinical laboratory actually encompassed four distinct species (K. oxytoca, Klebsiella michiganensis, Klebsiella grimontii and Klebsiella pasteurii), referred to as the K. oxytoca species complex (KoSC). There was significant diversity within the population, with only 10/67 multi-locus sequence types (STs) represented by more than one isolate. Strain transmission was rare, with only one likely event identified. Six isolates had extended spectrum beta-lactamase (blaSHV-12 and/or blaCTX-M-9) or carbapenemase (blaIMP-4) genes. One pair of K. michiganensis and K. pasteurii genomes carried identical blaIMP-4 IncL/M plasmids, indicative of plasmid transmission. CONCLUSION: Whilst antimicrobial resistance was rare, the resistance plasmids were similar to those found in other Enterobacterales, demonstrating that KoSC has access to the same plasmid reservoir and thus there is potential for multi-drug resistance. Further genomic studies are required to improve our understanding of the KoSC population and facilitate investigation into the attributes of successful nosocomial isolates.
  • Item
    Thumbnail Image
    Genomic dissection of Klebsiella pneumoniae infections in hospital patients reveals insights into an opportunistic pathogen
    Gorrie, CL ; Mirceta, M ; Wick, RR ; Judd, LM ; Lam, MMC ; Gomi, R ; Abbott, IJ ; Thomson, NR ; Strugnell, RA ; Pratt, NF ; Garlick, JS ; Watson, KM ; Hunter, PC ; Pilcher, DV ; McGloughlin, SA ; Spelman, DW ; Wyres, KL ; Jenney, AWJ ; Holt, KE (NATURE PORTFOLIO, 2022-05-31)
    Klebsiella pneumoniae is a major cause of opportunistic healthcare-associated infections, which are increasingly complicated by the presence of extended-spectrum beta-lactamases (ESBLs) and carbapenem resistance. We conducted a year-long prospective surveillance study of K. pneumoniae clinical isolates in hospital patients. Whole-genome sequence (WGS) data reveals a diverse pathogen population, including other species within the K. pneumoniae species complex (18%). Several infections were caused by K. variicola/K. pneumoniae hybrids, one of which shows evidence of nosocomial transmission. A wide range of antimicrobial resistance (AMR) phenotypes are observed, and diverse genetic mechanisms identified (mainly plasmid-borne genes). ESBLs are correlated with presence of other acquired AMR genes (median n = 10). Bacterial genomic features associated with nosocomial onset are ESBLs (OR 2.34, p = 0.015) and rhamnose-positive capsules (OR 3.12, p < 0.001). Virulence plasmid-encoded features (aerobactin, hypermucoidy) are observed at low-prevalence (<3%), mostly in community-onset cases. WGS-confirmed nosocomial transmission is implicated in just 10% of cases, but strongly associated with ESBLs (OR 21, p < 1 × 10-11). We estimate 28% risk of onward nosocomial transmission for ESBL-positive strains vs 1.7% for ESBL-negative strains. These data indicate that K. pneumoniae infections in hospitalised patients are due largely to opportunistic infections with diverse strains, with an additional burden from nosocomially-transmitted AMR strains and community-acquired hypervirulent strains.
  • Item
    Thumbnail Image
    Kaptive 2.0: updated capsule and lipopolysaccharide locus typing for the Klebsiella pneumoniae species complex
    Lam, MMC ; Wick, RR ; Judd, LM ; Holt, KE ; Wyres, KL (MICROBIOLOGY SOC, 2022-03)
    The outer polysaccharide capsule and lipopolysaccharide (LPS) antigens are key targets for novel control strategies targeting Klebsiella pneumoniae and related taxa from the K. pneumoniae species complex (KpSC), including vaccines, phage and monoclonal antibody therapies. Given the importance and growing interest in these highly diverse surface antigens, we had previously developed Kaptive, a tool for rapidly identifying and typing capsule (K) and outer LPS (O) loci from whole genome sequence data. Here, we report two significant updates, now freely available in Kaptive 2.0 (https://github.com/katholt/kaptive): (i) the addition of 16 novel K locus sequences to the K locus reference database following an extensive search of >17 000 KpSC genomes; and (ii) enhanced O locus typing to enable prediction of the clinically relevant O2 antigen (sub)types, for which the genetic determinants have been recently described. We applied Kaptive 2.0 to a curated dataset of >12 000 public KpSC genomes to explore for the first time, to the best of our knowledge, the distribution of predicted O (sub)types across species, sampling niches and clones, which highlighted key differences in the distributions that warrant further investigation. As the uptake of genomic surveillance approaches continues to expand globally, the application of Kaptive 2.0 will generate novel insights essential for the design of effective KpSC control strategies.
  • Item
    Thumbnail Image
    Linear plasmids in Klebsiella and other Enterobacteriaceae
    Hawkey, J ; Cottingham, H ; Tokolyi, A ; Wick, RR ; Judd, LM ; Cerdeira, L ; Garcia, DDO ; Wyres, KL ; Holt, KE (MICROBIOLOGY SOC, 2022-04)
    Linear plasmids are extrachromosomal DNA elements that have been found in a small number of bacterial species. To date, the only linear plasmids described in the family Enterobacteriaceae belong to Salmonella, first found in Salmonella enterica Typhi. Here, we describe a collection of 12 isolates of the Klebsiella pneumoniae species complex in which we identified linear plasmids. Screening of assembly graphs assembled from public read sets identified linear plasmid structures in a further 13 K. pneumoniae species complex genomes. We used these 25 linear plasmid sequences to query all bacterial genome assemblies in the National Center for Biotechnology Information database, and discovered an additional 61 linear plasmid sequences in a variety of Enterobacteriaceae species. Gene content analysis divided these plasmids into five distinct phylogroups, with very few genes shared across more than two phylogroups. The majority of linear plasmid-encoded genes are of unknown function; however, each phylogroup carried its own unique toxin-antitoxin system and genes with homology to those encoding the ParAB plasmid stability system. Passage in vitro of the 12 linear plasmid-carrying Klebsiella isolates in our collection (which include representatives of all five phylogroups) indicated that these linear plasmids can be stably maintained, and our data suggest they can transmit between K. pneumoniae strains (including members of globally disseminated multidrug-resistant clones) and also between diverse Enterobacteriaceae species. The linear plasmid sequences, and representative isolates harbouring them, are made available as a resource to facilitate future studies on the evolution and function of these novel plasmids.
  • Item
    Thumbnail Image
    A curated collection of Klebsiella metabolic models reveals variable substrate usage and gene essentiality
    Hawkey, J ; Vezina, B ; Monk, JM ; Judd, LM ; Harshegyi, T ; Lopez-Fernandez, S ; Rodrigues, C ; Brisse, S ; Holt, KE ; Wyres, KL (COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT, 2022-05)
    The Klebsiella pneumoniae species complex (KpSC) is a set of seven Klebsiella taxa that are found in a variety of niches and are an important cause of opportunistic health care-associated infections in humans. Because of increasing rates of multi-drug resistance within the KpSC, there is a growing interest in better understanding the biology and metabolism of these organisms to inform novel control strategies. We collated 37 sequenced KpSC isolates isolated from a variety of niches, representing all seven taxa. We generated strain-specific genome-scale metabolic models (GEMs) for all 37 isolates and simulated growth phenotypes on 511 distinct carbon, nitrogen, sulfur, and phosphorus substrates. Models were curated and their accuracy was assessed using matched phenotypic growth data for 94 substrates (median accuracy of 96%). We explored species-specific growth capabilities and examined the impact of all possible single gene deletions using growth simulations in 145 core carbon substrates. These analyses revealed multiple strain-specific differences, within and between species, and highlight the importance of selecting a diverse range of strains when exploring KpSC metabolism. This diverse set of highly accurate GEMs could be used to inform novel drug design, enhance genomic analyses, and identify novel virulence and resistance determinants. We envisage that these 37 curated strain-specific GEMs, covering all seven taxa of the KpSC, provide a valuable resource to the Klebsiella research community.
  • Item
    Thumbnail Image
    Whole genome sequence analysis of Salmonella Typhi in Papua New Guinea reveals an established population of genotype 2.1.7 sensitive to antimicrobials
    Dyson, ZA ; Malau, E ; Horwood, PF ; Ford, R ; Siba, V ; Yoannes, M ; Pomat, W ; Passey, M ; Judd, LM ; Ingle, DJ ; Williamson, DA ; Dougan, G ; Greenhill, AR ; Holt, KE ; Senok, A (PUBLIC LIBRARY SCIENCE, 2022-03)
    BACKGROUND: Typhoid fever, a systemic infection caused by Salmonella enterica serovar Typhi, remains a considerable public health threat in impoverished regions within many low- and middle-income settings. However, we still lack a detailed understanding of the emergence, population structure, molecular mechanisms of antimicrobial resistance (AMR), and transmission dynamics of S. Typhi across many settings, particularly throughout the Asia-Pacific islands. Here we present a comprehensive whole genome sequence (WGS) based overview of S. Typhi populations circulating in Papua New Guinea (PNG) over 30 years. PRINCIPLE FINDINGS: Bioinformatic analysis of 86 S. Typhi isolates collected between 1980-2010 demonstrated that the population structure of PNG is dominated by a single genotype (2.1.7) that appears to have emerged in the Indonesian archipelago in the mid-twentieth century with minimal evidence of inter-country transmission. Genotypic and phenotypic data demonstrated that the PNG S. Typhi population appears to be susceptible to former first line drugs for treating typhoid fever (chloramphenicol, ampicillin and co-trimoxazole), as well as fluoroquinolones, third generation cephalosporins, and macrolides. PNG genotype 2.1.7 was genetically conserved, with very few deletions, and no evidence of plasmid or prophage acquisition. Genetic variation among this population was attributed to either single point mutations, or homologous recombination adjacent to repetitive ribosomal RNA operons. SIGNIFICANCE: Antimicrobials remain an effective option for the treatment of typhoid fever in PNG, along with other intervention strategies including improvements to water, sanitation and hygiene (WaSH) related infrastructure and potentially the introduction of Vi-conjugate vaccines. However, continued genomic surveillance is warranted to monitor for the emergence of AMR within local populations, or the introduction of AMR associated genotypes of S. Typhi in this setting.
  • Item
    Thumbnail Image
    Species interactions constrain adaptation and preserve ecological stability in an experimental microbial community
    Barber, JN ; Nicholson, LC ; Woods, LC ; Judd, LM ; Sezmis, AL ; Hawkey, J ; Holt, KE ; McDonald, MJ (SPRINGERNATURE, 2022-05)
    Species loss within a microbial community can increase resource availability and spur adaptive evolution. Environmental shifts that cause species loss or fluctuations in community composition are expected to become more common, so it is important to understand the evolutionary forces that shape the stability and function of the emergent community. Here we study experimental cultures of a simple, ecologically stable community of Saccharomyces cerevisiae and Lactobacillus plantarum, in order to understand how the presence or absence of a species impacts coexistence over evolutionary timescales. We found that evolution in coculture led to drastically altered evolutionary outcomes for L. plantarum, but not S. cerevisiae. Both monoculture- and co-culture-evolved L. plantarum evolved dozens of mutations over 925 generations of evolution, but only L. plantarum that had evolved in isolation from S. cerevisiae lost the capacity to coexist with S. cerevisiae. We find that the evolutionary loss of ecological stability corresponds with fitness differences between monoculture-evolved L. plantarum and S. cerevisiae and genetic changes that repeatedly evolve across the replicate populations of L. plantarum. This work shows how coevolution within a community can prevent destabilising evolution in individual species, thereby preserving ecological diversity and stability, despite rapid adaptation.
  • Item
    Thumbnail Image
    wMel Wolbachia genome remains stable after 7 years in Australian Aedes aegypti field populations
    Dainty, KR ; Hawkey, J ; Judd, LM ; Pacidonio, EC ; Duyvestyn, JM ; Goncalves, DS ; Lin, SY ; O'Donnell, TB ; O'Neill, SL ; Simmons, CP ; Holt, KE ; Flores, HA (MICROBIOLOGY SOC, 2021-09)
    Infection of wMel Wolbachia in Aedes aegypti imparts two signature features that enable its application for biocontrol of dengue. First, the susceptibility of mosquitoes to viruses such as dengue and Zika is reduced. Second, a reproductive manipulation is caused that enables wMel introgression into wild-type mosquito populations. The long-term success of this method relies, in part, on evolution of the wMel genome not compromising the critical features that make it an attractive biocontrol tool. This study compared the wMel Wolbachia genome at the time of initial releases and 1-7 years post-release in Cairns, Australia. Our results show the wMel genome remains highly conserved up to 7 years post-release in gene sequence, content, synteny and structure. This work suggests the wMel genome is stable in its new mosquito host and, therefore, provides reassurance on the potential for wMel to deliver long-term public-health impacts.