Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Trajectories of childhood immune development and respiratory health relevant to asthma and allergy.
    Tang, HH ; Teo, SM ; Belgrave, DC ; Evans, MD ; Jackson, DJ ; Brozynska, M ; Kusel, MM ; Johnston, SL ; Gern, JE ; Lemanske, RF ; Simpson, A ; Custovic, A ; Sly, PD ; Holt, PG ; Holt, KE ; Inouye, M (eLife Sciences Publications, Ltd, 2018-10-15)
    Events in early life contribute to subsequent risk of asthma; however, the causes and trajectories of childhood wheeze are heterogeneous and do not always result in asthma. Similarly, not all atopic individuals develop wheeze, and vice versa. The reasons for these differences are unclear. Using unsupervised model-based cluster analysis, we identified latent clusters within a prospective birth cohort with deep immunological and respiratory phenotyping. We characterised each cluster in terms of immunological profile and disease risk, and replicated our results in external cohorts from the UK and USA. We discovered three distinct trajectories, one of which is a high-risk 'atopic' cluster with increased propensity for allergic diseases throughout childhood. Atopy contributes varyingly to later wheeze depending on cluster membership. Our findings demonstrate the utility of unsupervised analysis in elucidating heterogeneity in asthma pathogenesis and provide a foundation for improving management and prevention of childhood asthma.
  • Item
    No Preview Available
    Airway Microbiota Dynamics Uncover a Critical Window for Interplay of Pathogenic Bacteria and Allergy in Childhood Respiratory Disease
    Teo, SM ; Tang, HHF ; Mok, D ; Judd, LM ; Watts, SC ; Pham, K ; Holt, BJ ; Kusel, M ; Serralha, M ; Troy, N ; Bochkov, YA ; Grindle, K ; Lemanske, RF ; Johnston, SL ; Gern, JE ; Sly, PD ; Holt, PG ; Holt, KE ; Inouye, M (CELL PRESS, 2018-09-12)
    Repeated cycles of infection-associated lower airway inflammation drive the pathogenesis of persistent wheezing disease in children. In this study, the occurrence of acute respiratory tract illnesses (ARIs) and the nasopharyngeal microbiome (NPM) were characterized in 244 infants through their first five years of life. Through this analysis, we demonstrate that >80% of infectious events involve viral pathogens, but are accompanied by a shift in the NPM toward dominance by a small range of pathogenic bacterial genera. Unexpectedly, this change frequently precedes the detection of viral pathogens and acute symptoms. Colonization of illness-associated bacteria coupled with early allergic sensitization is associated with persistent wheeze in school-aged children, which is the hallmark of the asthma phenotype. In contrast, these bacterial genera are associated with "transient wheeze" that resolves after age 3 years in non-sensitized children. Thus, to complement early allergic sensitization, monitoring NPM composition may enable early detection and intervention in high-risk children.
  • Item
    No Preview Available
    The Infant Nasopharyngeal Microbiome Impacts Severity of Lower Respiratory Infection and Risk of Asthma Development
    Teo, SM ; Mok, D ; Pham, K ; Kusel, M ; Serralha, M ; Troy, N ; Holt, BJ ; Hales, BJ ; Walker, ML ; Hollams, E ; Bochkov, YA ; Grindle, K ; Johnston, SL ; Gern, JE ; Sly, PD ; Holt, PG ; Holt, KE ; Inouye, M (CELL PRESS, 2015-05-13)
    The nasopharynx (NP) is a reservoir for microbes associated with acute respiratory infections (ARIs). Lung inflammation resulting from ARIs during infancy is linked to asthma development. We examined the NP microbiome during the critical first year of life in a prospective cohort of 234 children, capturing both the viral and bacterial communities and documenting all incidents of ARIs. Most infants were initially colonized with Staphylococcus or Corynebacterium before stable colonization with Alloiococcus or Moraxella. Transient incursions of Streptococcus, Moraxella, or Haemophilus marked virus-associated ARIs. Our data identify the NP microbiome as a determinant for infection spread to the lower airways, severity of accompanying inflammatory symptoms, and risk for future asthma development. Early asymptomatic colonization with Streptococcus was a strong asthma predictor, and antibiotic usage disrupted asymptomatic colonization patterns. In the absence of effective anti-viral therapies, targeting pathogenic bacteria within the NP microbiome could represent a prophylactic approach to asthma.
  • Item
    Thumbnail Image
    Elucidation of pathways driving asthma pathogenesis: development of a systems-level analytic strategy
    Walker, ML ; Holt, KE ; Anderson, GP ; Teo, SM ; Sly, PD ; Holt, PG ; Inouye, M (FRONTIERS MEDIA SA, 2014-09-23)
    Asthma is a genetically complex, chronic lung disease defined clinically as episodic airflow limitation and breathlessness that is at least partially reversible, either spontaneously or in response to therapy. Whereas asthma was rare in the late 1800s and early 1900s, the marked increase in its incidence and prevalence since the 1960s points to substantial gene × environment interactions occurring over a period of years, but these interactions are very poorly understood (1-6). It is widely believed that the majority of asthma begins during childhood and manifests first as intermittent wheeze. However, wheeze is also very common in infancy and only a subset of wheezy children progress to persistent asthma for reasons that are largely obscure. Here, we review the current literature regarding causal pathways leading to early asthma development and chronicity. Given the complex interactions of many risk factors over time eventually leading to apparently multiple asthma phenotypes, we suggest that deeply phenotyped cohort studies combined with sophisticated network models will be required to derive the next generation of biological and clinical insights in asthma pathogenesis.