Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    STAGE-SPECIFIC BINDING OF LEISHMANIA-DONOVANI TO THE SAND FLY VECTOR MIDGUT IS REGULATED BY CONFORMATIONAL-CHANGES IN THE ABUNDANT SURFACE LIPOPHOSPHOGLYCAN
    SACKS, DL ; PIMENTA, PFP ; MCCONVILLE, MJ ; SCHNEIDER, P ; TURCO, SJ (ROCKEFELLER UNIV PRESS, 1995-02-01)
    The life cycle of Leishmania parasites within the sand fly vector includes the development of extracellular promastigotes from a noninfective, procyclic stage into an infective, metacyclic stage that is uniquely adapted for transmission by the fly and survival in the vertebrate host. These adaptations were explored in the context of the structure and function of the abundant surface lipophosphoglycan (LPG) on Leishmania donovani promastigotes. During metacyclogenesis, the salient structural feature of L. donovani LPG is conserved, involving expression of a phosphoglycan chain made up of unsubstituted disaccharide-phosphate repeats. Two important developmental modifications were also observed. First, the size of the molecule is substantially increased because of a twofold increase in the number of phosphorylated disaccharide repeat units expressed. Second, there is a concomitant decrease in the presentation of terminally exposed sugars. This later property was indicated by the reduced accessibility of terminal galactose residues to galactose oxidase and the loss of binding by the lectins, peanut agglutinin, and concanavalin A, to metacyclic LPG in vivo and in vitro. The loss of lectin binding was not due to downregulation of the capping oligosaccharides as the same beta-linked galactose or alpha-linked mannose-terminating oligosaccharides were present in both procyclic and metacyclic promastigotes. The capping sugars on procyclic LPG were found to mediate procyclic attachment to the sand fly midgut, whereas these same sugars on metacyclic LPG failed to mediate metacyclic binding. And whereas intact metacyclic LPG did not inhibit procyclic attachment, depolymerized LPG inhibited as well as procyclic LPG, demonstrating that the ligands are normally buried. The masking of the terminal sugars is attributed to folding and clustering of the extended phosphoglycan chains, which form densely distributed particulate structures visible on fracture-flip preparations of the metacyclic surface. The exposure and subsequent masking of the terminal capping sugars explains the stage specificity of promastigote attachment to and release from the vector midgut, which are key events in the development of transmissible infections in the fly.
  • Item
    Thumbnail Image
    Characterization of a Leishmania mexicana mutant defective in synthesis of free and protein-linked GPI glycolipids
    Naderer, T ; McConville, MJ (ELSEVIER, 2002)
    The cell surface of the promastigote stage of the protozoan parasite, Leishmania mexicana is coated by a number of glycosylphosphatidylinositol (GPI)-anchored proteins, a GPI-anchored lipophosphoglycan (LPG) and an abundant class of free GPIs, termed glycoinositolphospholipids (GIPLs). We have developed a new screen for isolating L. mexicana mutants that are defective in GPI biosynthesis, involving concanavalin A selection of a parental strain with a modified surface coat. One mutant was isolated that lacked the major GIPL species and mature GPI-protein anchor precursors, but synthesized normal levels of LPG anchor precursors. Based on analysis of apolar GIPLs that accumulate in this mutant and in vivo and in vitro synthesized GPIs, this mutant was found to have a defect in the addition of an alpha1-6 linked mannose to the common precursor, Man(1)GlcN-PI. The apolar GIPLs were transported to the cell surface with the same kinetics as mature GIPLs. However, non-anchored isoforms of the major GPI-anchored protein, gp63, were either slowly secreted (with a t(1/2) of 2 h) or retained within the endoplasmic reticulum, respectively. These findings suggest that common enzymes are involved in the synthesis of GIPLs and protein anchors and have implications for understanding how the biosynthesis of the major surface components of these parasites is regulated.
  • Item
    Thumbnail Image
    Regulated degradation of an endoplasmic reticulum membrane protein in a tubular lysosome in Leishmania mexicana
    Mullin, KA ; Foth, BJ ; Ilgoutz, SC ; Callaghan, JM ; Zawadzki, JL ; McFadden, GI ; McConville, MJ ; Bonifacino, J (AMER SOC CELL BIOLOGY, 2001-08)
    The cell surface of the human parasite Leishmania mexicana is coated with glycosylphosphatidylinositol (GPI)-anchored macromolecules and free GPI glycolipids. We have investigated the intracellular trafficking of green fluorescent protein- and hemagglutinin-tagged forms of dolichol-phosphate-mannose synthase (DPMS), a key enzyme in GPI biosynthesis in L. mexicana promastigotes. These functionally active chimeras are found in the same subcompartment of the endoplasmic reticulum (ER) as endogenous DPMS but are degraded as logarithmically growing promastigotes reach stationary phase, coincident with the down-regulation of endogenous DPMS activity and GPI biosynthesis in these cells. We provide evidence that these chimeras are constitutively transported to and degraded in a novel multivesicular tubule (MVT) lysosome. This organelle is a terminal lysosome, which is labeled with the endocytic marker FM 4-64, contains lysosomal cysteine and serine proteases and is disrupted by lysomorphotropic agents. Electron microscopy and subcellular fractionation studies suggest that the DPMS chimeras are transported from the ER to the lumen of the MVT via the Golgi apparatus and a population of 200-nm multivesicular bodies. In contrast, soluble ER proteins are not detectably transported to the MVT lysosome in either log or stationary phase promastigotes. Finally, the increased degradation of the DPMS chimeras in stationary phase promastigotes coincides with an increase in the lytic capacity of the MVT lysosome and changes in the morphology of this organelle. We conclude that lysosomal degradation of DPMS may be important in regulating the cellular levels of this enzyme and the stage-dependent biosynthesis of the major surface glycolipids of these parasites.
  • Item
    Thumbnail Image
    Intracellular trafficking of glycosylphosphatidylinositol (GPI)-anchored proteins and free GPIs in Leishmania mexicana
    Ralton, JE ; Mullin, KA ; McConville, MJ (PORTLAND PRESS, 2002-04-15)
    Free glycosylphosphatidylinositols (GPIs) are an important class of membrane lipids in many pathogenic protozoa. In this study, we have investigated the subcellular distribution and intracellular trafficking of an abundant class of free GPIs [termed glycosylinositolphospholipids (GIPLs)] in Leishmania mexicana promastigotes. The intracellular transport of the GIPLs and the major GPI-anchored glycoprotein gp63 was measured by following the incorporation of these molecules into sphingolipid-rich, detergent-resistant membranes (DRMs) in the plasma membrane. In metabolic-labelling experiments, mature GIPLs and gp63 were transported to DRMs in the plasma membrane with a t(1/2) of 70 and 40 min, respectively. Probably, GIPL transport to the DRMs involves a vesicular mechanism, as transport of both the GIPLs and gp63 was inhibited similarly at 10 degrees C. All GIPL intermediates were quantitatively recovered in Triton X-100-soluble membranes and were largely orientated on the cytoplasmic face of the endoplasmic reticulum, as shown by their sensitivity to exogenous phosphatidylinositol-specific phospho-lipase C. On the contrary, a significant proportion of the mature GIPLs ( approximately 50% of iM4) were accessible to membrane-impermeable probes on the surface of live promastigotes. These results suggest that the GIPLs are flipped across intracellular or plasma membranes during surface transport and that a significant fraction may populate the cytoplasmic leaflet of the plasma membrane. Finally, treatment of L. mexicana promastigotes with myriocin, an inhibitor of sphingolipid biosynthesis, demonstrated that ongoing sphingolipid biosynthesis is not required for the plasma-membrane transport of either gp63 or the GIPLs and that DRMs persist even when cellular levels of the major sphingolipid are depleted by 70%.