Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 1815
  • Item
    Thumbnail Image
    Proteome-wide systems genetics identifies UFMylation as a regulator of skeletal muscle function
    Molendijk, J ; Blazev, R ; Mills, RJ ; Ng, Y-K ; Watt, K ; Chau, D ; Gregorevic, P ; Crouch, PJ ; Hilton, JBW ; Lisowski, L ; Zhang, P ; Reue, K ; Lusis, AJ ; Hudson, JE ; James, DE ; Seldin, MM ; Parker, BL (eLIFE SCIENCES PUBL LTD, 2022-12-06)
    Improving muscle function has great potential to improve the quality of life. To identify novel regulators of skeletal muscle metabolism and function, we performed a proteomic analysis of gastrocnemius muscle from 73 genetically distinct inbred mouse strains, and integrated the data with previously acquired genomics and >300 molecular/phenotypic traits via quantitative trait loci mapping and correlation network analysis. These data identified thousands of associations between protein abundance and phenotypes and can be accessed online (https://muscle.coffeeprot.com/) to identify regulators of muscle function. We used this resource to prioritize targets for a functional genomic screen in human bioengineered skeletal muscle. This identified several negative regulators of muscle function including UFC1, an E2 ligase for protein UFMylation. We show UFMylation is up-regulated in a mouse model of amyotrophic lateral sclerosis, a disease that involves muscle atrophy. Furthermore, in vivo knockdown of UFMylation increased contraction force, implicating its role as a negative regulator of skeletal muscle function.
  • Item
    Thumbnail Image
    Heparin Inhibits SARS-CoV-2 Replication in Human Nasal Epithelial Cells
    Lee, LYY ; Suryadinata, R ; McCafferty, C ; Ignjatovic, V ; Purcell, DFJ ; Robinson, P ; Morton, CJ ; Parker, MW ; Anderson, GP ; Monagle, P ; Subbarao, K ; Neil, JA (MDPI, 2022-12-01)
    SARS-CoV-2 is the causative agent of the COVID-19 pandemic. Vaccination, supported by social and public health measures, has proven efficacious for reducing disease severity and virus spread. However, the emergence of highly transmissible viral variants that escape prior immunity highlights the need for additional mitigation approaches. Heparin binds the SARS-CoV-2 spike protein and can inhibit virus entry and replication in susceptible human cell lines and bronchial epithelial cells. Primary infection predominantly occurs via the nasal epithelium, but the nasal cell biology of SARS-CoV-2 is not well studied. We hypothesized that prophylactic intranasal administration of heparin may provide strain-agnostic protection for household contacts or those in high-risk settings against SARS-CoV-2 infection. Therefore, we investigated the ability of heparin to inhibit SARS-CoV-2 infection and replication in differentiated human nasal epithelial cells and showed that prolonged exposure to heparin inhibits virus infection. Furthermore, we establish a method for PCR detection of SARS-CoV-2 viral genomes in heparin-treated samples that can be adapted for the detection of viruses in clinical studies.
  • Item
    Thumbnail Image
    Gastrointestinal consequences of lipopolysaccharide-induced lung inflammation
    McQuade, RM ; Bandara, M ; Diwakarla, S ; Sahakian, L ; Han, MN ; Al Thaalibi, M ; Di Natale, MR ; Tan, M ; Harwood, KH ; Schneider-Futschik, EK ; Jarnicki, A (SPRINGER BASEL AG, 2022-11-02)
    BACKGROUND: Respiratory inflammation is the body's response to lung infection, trauma or hypersensitivity and is often accompanied by comorbidities, including gastrointestinal (GI) symptoms. Why respiratory inflammation is accompanied by GI dysfunction remains unclear. Here, we investigate the effect of lipopolysaccharide (LPS)-induced lung inflammation on intestinal barrier integrity, tight-junctions, enteric neurons and inflammatory marker expression. METHODS: Female C57bl/6 mice (6-8 weeks) were intratracheally administered LPS (5 µg) or sterile saline, and assessed after either 24 or 72 h. Total and differential cell counts in bronchoalveolar lavage fluid (BALF) were used to evaluate lung inflammation. Intestinal barrier integrity was assessed via cross sectional immunohistochemistry of tight junction markers claudin-1, claudin-4 and EpCAM. Changes in the enteric nervous system (ENS) and inflammation in the intestine were quantified immunohistochemically using neuronal markers Hu + and nNOS, glial markers GFAP and S100β and pan leukocyte marker CD45. RESULTS: Intratracheal LPS significantly increased the number of neutrophils in BALF at 24 and 72 h. These changes were associated with an increase in CD45 + cells in the ileal mucosa at 24 and 72 h, increased goblet cell expression at 24 h, and increased expression of EpCAM at 72 h. LPS had no effect on the expression of GFAP, S100β, nor the number of Hu + neurons or proportion of nNOS neurons in the myenteric plexus. CONCLUSIONS: Intratracheal LPS administration induces inflammation in the ileum that is associated with enhanced expression of EpCAM, decreased claudin-4 expression and increased goblet cell density, these changes may contribute to systemic inflammation that is known to accompany many inflammatory diseases of the lung.
  • Item
    Thumbnail Image
    Editorial: Women in pharmacology of infectious diseases: 2021.
    Schneider-Futschik, EK ; Spriet, I ; Zhou, H (Frontiers Media SA, 2022)
  • Item
    Thumbnail Image
    SATB1 ensures appropriate transcriptional programs within naive CD8(+) T cells
    Nussing, S ; Miosge, LA ; Lee, K ; Olshansky, M ; Barugahare, A ; Roots, CM ; Sontani, Y ; Day, EB ; Koutsakos, M ; Kedzierska, K ; Goodnow, CC ; Russ, BE ; Daley, SR ; Turner, SJ (WILEY, 2022-07-13)
    Special AT-binding protein 1 (SATB1) is a chromatin-binding protein that has been shown to be a key regulator of T-cell development and CD4+ T-cell fate decisions and function. The underlying function for SATB1 in peripheral CD8+ T-cell differentiation processes is largely unknown. To address this, we examined SATB1-binding patterns in naïve and effector CD8+ T cells demonstrating that SATB1 binds to noncoding regulatory elements linked to T-cell lineage-specific gene programs, particularly in naïve CD8+ T cells. We then assessed SATB1 function using N-ethyl-N-nitrosourea-mutant mice that exhibit a point mutation in the SATB1 DNA-binding domain (termed Satb1m1Anu/m1Anu ). Satb1m1Anu/m1Anu mice exhibit diminished SATB1-binding, naïve, Satb1m1Anu/m1Anu CD8+ T cells exhibiting transcriptional and phenotypic characteristics reminiscent of effector T cells. Upon activation, the transcriptional signatures of Satb1m1Anu/m1Anu and wild-type effector CD8+ T cells converged. While there were no overt differences, primary respiratory infection of Satb1m1Anu/m1Anu mice with influenza A virus (IAV) resulted in a decreased proportion and number of IAV-specific CD8+ effector T cells recruited to the infected lung when compared with wild-type mice. Together, these data suggest that SATB1 has a major role in an appropriate transcriptional state within naïve CD8+ T cells and ensures appropriate CD8+ T-cell effector gene expression upon activation.
  • Item
    Thumbnail Image
    Compulsive-like eating of high-fat high-sugar food is associated with 'addiction-like' glutamatergic dysfunction in obesity prone rats
    Sketriene, D ; Battista, D ; Lalert, L ; Kraiwattanapirom, N ; Han, NT ; Leeboonngam, T ; Knackstedt, LA ; Nithianantharajah, J ; Sumithran, P ; Lawrence, AJ ; Brown, RM (WILEY, 2022-09-01)
    Chronic overeating is a core feature of diet-induced obesity. There is increasing evidence that in vulnerable individuals, such overeating could become compulsive, resembling an addictive disorder. The transition to compulsive substance use has been linked with changes at glutamatergic synapses in the nucleus accumbens. In this study, we investigated a potential link between such glutamatergic dysregulation and compulsive-like eating using a rat model of diet-induced obesity. A conditioned suppression task demonstrated that diet-induced obese rats display eating despite negative consequences, as their consumption was insensitive to an aversive cue. Moreover, nucleus accumbens expression of GluA1 and xCT proteins was upregulated in diet-induced obese animals. Lastly, both a computed 'addiction score' (based on performance across three criteria) and weight gain were positively correlated with changes in GluA1 and xCT expression in the nucleus accumbens. These data demonstrate that the propensity for diet-induced obesity is associated with compulsive-like eating of highly palatable food and is accompanied by 'addiction-like' glutamatergic dysregulation in the nucleus accumbens, thus providing neurobiological evidence of addiction-like pathology in this model of obesity.
  • Item
    Thumbnail Image
    Biparatopic nanobodies targeting the receptor binding domain efficiently neutralize SARS-CoV-2
    Pymm, P ; Redmond, SJ ; Dolezal, O ; Mordant, F ; Lopez, E ; Cooney, JP ; Davidson, KC ; Haycroft, ER ; Tan, CW ; Seneviratna, R ; Grimley, SL ; Purcell, DFJ ; Kent, SJ ; Wheatley, AK ; Wang, L-F ; Leis, A ; Glukhova, A ; Pellegrini, M ; Chung, AW ; Subbarao, K ; Uldrich, AP ; Tham, W-H ; Godfrey, DI ; Gherardin, NA (CELL PRESS, 2022-10-20)
    The development of therapeutics to prevent or treat COVID-19 remains an area of intense focus. Protein biologics, including monoclonal antibodies and nanobodies that neutralize virus, have potential for the treatment of active disease. Here, we have used yeast display of a synthetic nanobody library to isolate nanobodies that bind the receptor-binding domain (RBD) of SARS-CoV-2 and neutralize the virus. We show that combining two clones with distinct binding epitopes within the RBD into a single protein construct to generate biparatopic reagents dramatically enhances their neutralizing capacity. Furthermore, the biparatopic nanobodies exhibit enhanced control over clinically relevant RBD variants that escaped recognition by the individual nanobodies. Structural analysis of biparatopic binding to spike (S) protein revealed a unique binding mode whereby the two nanobody paratopes bridge RBDs encoded by distinct S trimers. Accordingly, biparatopic nanobodies offer a way to rapidly generate powerful viral neutralizers with enhanced ability to control viral escape mutants.
  • Item
    Thumbnail Image
    Unlocking autofluorescence in the era of full spectrum analysis: Implications for immunophenotype discovery projects
    Jameson, VJ ; Luke, T ; Yan, Y ; Hind, A ; Evrard, M ; Man, K ; Mackay, LK ; Kallies, A ; Villadangos, JA ; McWilliam, HEG ; Perez-Gonzalez, A (WILEY, 2022-04-12)
    Understanding the complex elements affecting signal resolution in cytometry is key for quality experimental design and data. In this study, we incorporate autofluorescence as a contributing factor to our understanding of resolution in cytometry and corroborate its impact in fluorescence signal detection through mathematical predictions supported by empirical evidence. Our findings illustrate the critical importance of autofluorescence extraction via full spectrum unmixing in unmasking dim signals and delineating the expression and subset distribution of low abundance markers in discovery projects. We apply our findings to the precise definition of the tissue and cellular distribution of a weakly expressed fluorescent protein that reports on a low-abundance immunological gene. Exploiting the full spectrum coverage enabled by Aurora 5L, we describe a novel approach to the isolation of pure cell subset-specific autofluorescence profiles based on high dimensionality reduction algorithms. This method can also be used to unveil differences in the autofluorescent fingerprints of tissues in homeostasis and after immunological challenges.
  • Item
    Thumbnail Image
    A specialized tyrosine-based endocytosis signal in MR1 controls antigen presentation to MAIT cells
    Lim, HJ ; Wubben, JM ; Garcia, CP ; Cruz-Gomez, S ; Deng, J ; Mak, JYW ; Hachani, A ; Anderson, RJ ; Painter, GF ; Goyette, J ; Amarasinghe, SL ; Ritchie, ME ; Roquilly, A ; Fairlie, DP ; Gaus, K ; Rossjohn, J ; Villadangos, JA ; McWilliam, HEG (ROCKEFELLER UNIV PRESS, 2022-09-21)
    MR1 is a highly conserved microbial immune-detection system in mammals. It captures vitamin B-related metabolite antigens from diverse microbes and presents them at the cell surface to stimulate MR1-restricted lymphocytes including mucosal-associated invariant T (MAIT) cells. MR1 presentation and MAIT cell recognition mediate homeostasis through host defense and tissue repair. The cellular mechanisms regulating MR1 cell surface expression are critical to its function and MAIT cell recognition, yet they are poorly defined. Here, we report that human MR1 is equipped with a tyrosine-based motif in its cytoplasmic domain that mediates low affinity binding with the endocytic adaptor protein 2 (AP2) complex. This interaction controls the kinetics of MR1 internalization from the cell surface and minimizes recycling. We propose MR1 uses AP2 endocytosis to define the duration of antigen presentation to MAIT cells and the detection of a microbial metabolic signature by the immune system.
  • Item
    Thumbnail Image
    In-cell DNP NMR reveals multiple targeting effect of antimicrobial peptide
    Separovic, F ; Hofferek, V ; Duff, AP ; McConville, MJ ; Sani, M-A (ELSEVIER, 2022-01-01)
    Dynamic nuclear polarization NMR spectroscopy was used to investigate the effect of the antimicrobial peptide (AMP) maculatin 1.1 on E. coli cells. The enhanced 15N NMR signals from nucleic acids, proteins and lipids identified a number of unanticipated physiological responses to peptide stress, revealing that membrane-active AMPs can have a multi-target impact on E. coli cells. DNP-enhanced 15N-observed 31P-dephased REDOR NMR allowed monitoring how Mac1 induced DNA condensation and prevented intermolecular salt bridges between the main E. coli lipid phosphatidylethanolamine (PE) molecules. The latter was supported by similar results obtained using E. coli PE lipid systems. Overall, the ability to monitor the action of antimicrobial peptides in situ will provide greater insight into their mode of action.