Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Type I interferon antagonism of the JMJD3-IRF4 pathway modulates macrophage activation and polarization
    Lee, KM-C ; Achuthan, AA ; De Souza, DP ; Lupancu, TJ ; Binger, KJ ; Lee, MKS ; Xu, Y ; McConville, MJ ; de Weerd, NA ; Dragoljevic, D ; Hertzog, PJ ; Murphy, AJ ; Hamilton, JA ; Fleetwood, AJ (CELL PRESS, 2022-04-19)
    Metabolic adaptations can directly influence the scope and scale of macrophage activation and polarization. Here we explore the impact of type I interferon (IFNβ) on macrophage metabolism and its broader impact on cytokine signaling pathways. We find that IFNβ simultaneously increased the expression of immune-responsive gene 1 and itaconate production while inhibiting isocitrate dehydrogenase activity and restricting α-ketoglutarate accumulation. IFNβ also increased the flux of glutamine-derived carbon into the tricarboxylic acid cycle to boost succinate levels. Combined, we identify that IFNβ controls the cellular α-ketoglutarate/succinate ratio. We show that by lowering the α-ketoglutarate/succinate ratio, IFNβ potently blocks the JMJD3-IRF4-dependent pathway in GM-CSF and IL-4 activated macrophages. The suppressive effects of IFNβ on JMJD3-IRF4-dependent responses, including M2 polarization and GM-CSF-induced inflammatory pain, were reversed by supplementation with α-ketoglutarate. These results reveal that IFNβ modulates macrophage activation and polarization through control of the cellular α-ketoglutarate/succinate ratio.
  • Item
    No Preview Available
    Function of hTim8a in complex IV assembly in neuronal cells provides insight into pathomechanism underlying Mohr-Tranebjaerg syndrome (vol 8, e48828, 2020)
    Kang, Y ; Anderson, AJ ; Jackson, TD ; Palmer, CS ; De Souza, DP ; Fujihara, KM ; Stait, T ; Frazier, AE ; Clemons, NJ ; Tull, D ; Thorburn, DR ; McConville, MJ ; Ryan, MT ; Stroud, DA ; Stojanovski, D (ELIFE SCIENCES PUBLICATIONS LTD, 2020-03-18)
  • Item
    Thumbnail Image
    Reprogrammed mRNA translation drives resistance to therapeutic targeting of ribosome biogenesis
    Kusnadi, EP ; Trigos, AS ; Cullinane, C ; Goode, DL ; Larsson, O ; Devlin, JR ; Chan, KT ; De Souza, DP ; McConville, MJ ; McArthur, GA ; Thomas, G ; Sanij, E ; Poortinga, G ; Hannan, RD ; Hannan, KM ; Kang, J ; Pearson, RB (WILEY, 2020-11-02)
    Elevated ribosome biogenesis in oncogene-driven cancers is commonly targeted by DNA-damaging cytotoxic drugs. Our previous first-in-human trial of CX-5461, a novel, less genotoxic agent that specifically inhibits ribosome biogenesis via suppression of RNA polymerase I (Pol I) transcription, revealed single-agent efficacy in refractory blood cancers. Despite this clinical response, patients were not cured. In parallel, we demonstrated a marked improvement in the in vivo efficacy of CX-5461 in combination with PI3K/AKT/mTORC1 pathway inhibitors. Here, we reveal the molecular basis for this improved efficacy observed in vivo, which is associated with specific suppression of translation of mRNAs encoding regulators of cellular metabolism. Importantly, acquired resistance to this cotreatment is driven by translational rewiring that results in dysregulated cellular metabolism and induction of a cAMP-dependent pathway critical for the survival of blood cancers including lymphoma and acute myeloid leukemia. Our studies thus identify key molecular mechanisms underpinning the response of blood cancers to selective inhibition of ribosome biogenesis and define metabolic vulnerabilities that will facilitate the rational design of more effective regimens for Pol I-directed therapies.
  • Item
    Thumbnail Image
    Metabolomics Provide Sensitive Insights into the Impacts of Low Level Environmental Contamination on Fish Health-A Pilot Study
    Long, SM ; Tull, DL ; De Souza, DP ; Kouremenos, KA ; Dayalan, S ; McConville, MJ ; Hassell, KL ; Pettigrove, VJ ; Gagnon, MM (MDPI, 2020-01)
    This exploratory study aims to investigate the health of sand flathead (Platycephalus bassensis) sampled from five sites in Port Phillip Bay, Australia using gas chromatography-mass spectrometry (GC-MS) metabolomics approaches. Three of the sites were the recipients of industrial, agricultural, and urban run-off and were considered urban sites, while the remaining two sites were remote from contaminant inputs, and hence classed as rural sites. Morphological parameters as well as polar and free fatty acid metabolites were used to investigate inter-site differences in fish health. Significant differences in liver somatic index (LSI) and metabolite abundance were observed between the urban and rural sites. Differences included higher LSI, an increased abundance of amino acids and energy metabolites, and reduced abundance of free fatty acids at the urban sites compared to the rural sites. These differences might be related to the additional energy requirements needed to cope with low-level contaminant exposure through energy demanding processes such as detoxification and antioxidant responses as well as differences in diet between the sites. In this study, we demonstrate that metabolomics approaches can offer a greater level of sensitivity compared to traditional parameters such as physiological parameters or biochemical markers of fish health, most of which showed no or little inter-site differences in the present study. Moreover, the metabolite responses are more informative than traditional biomarkers in terms of biological significance as disturbances in specific metabolic pathways can be identified.
  • Item
    Thumbnail Image
    Unique properties of a subset of human pluripotent stem cells with high capacity for self-renewal
    Lau, KX ; Mason, EA ; Kie, J ; De Souza, DP ; Kloehn, J ; Tull, D ; McConville, MJ ; Keniry, A ; Beck, T ; Blewitt, ME ; Ritchie, ME ; Naik, SH ; Zalcenstein, D ; Korn, O ; Su, S ; Romero, IG ; Spruce, C ; Baker, CL ; McGarr, TC ; Wells, CA ; Pera, MF (Nature Research, 2020-05-15)
    Archetypal human pluripotent stem cells (hPSC) are widely considered to be equivalent in developmental status to mouse epiblast stem cells, which correspond to pluripotent cells at a late post-implantation stage of embryogenesis. Heterogeneity within hPSC cultures complicates this interspecies comparison. Here we show that a subpopulation of archetypal hPSC enriched for high self-renewal capacity (ESR) has distinct properties relative to the bulk of the population, including a cell cycle with a very low G1 fraction and a metabolomic profile that reflects a combination of oxidative phosphorylation and glycolysis. ESR cells are pluripotent and capable of differentiation into primordial germ cell-like cells. Global DNA methylation levels in the ESR subpopulation are lower than those in mouse epiblast stem cells. Chromatin accessibility analysis revealed a unique set of open chromatin sites in ESR cells. RNA-seq at the subpopulation and single cell levels shows that, unlike mouse epiblast stem cells, the ESR subset of hPSC displays no lineage priming, and that it can be clearly distinguished from gastrulating and extraembryonic cell populations in the primate embryo. ESR hPSC correspond to an earlier stage of post-implantation development than mouse epiblast stem cells.