Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Without peripheral interference, thymic deletion is mediated in a cohort of double-positive cells without classical activation
    Zhan, YF ; Purton, JF ; Godfrey, DI ; Cole, TJ ; Heath, WR ; Lew, AM (NATL ACAD SCIENCES, 2003-02-04)
    Peripheral activation can cause bystander thymocyte death by eliciting a "cytokine storm." This event complicates in vivo studies using exogenous ligand-induced models of negative selection. A stable transgenic model that selectively eliminates peripheral CD4 cells has allowed us to analyze negative selection as direct cognate events in two T cell receptor transgenic mice, OT-II and DO11. Whereas cognate peptide induced a massive deletion in double-positive (DP) cells in mice with peripheral CD4 cells, this DP deletion was modest in mice lacking peripheral CD4 cells. Using BrdUrd and annexin V staining, we found that negative selection primarily occurs in a cohort of DP cells and the absence of single-positive (SP) cells is largely caused by reduction in the cohort of DP precursors. Moreover, the fates of DP cells and SP cells after antigen exposure were vastly different. Whereas SP cells up-regulated uniformly their CD69 and CD44 levels, increased their cell size, and survived after antigen exposure, DP cells had less CD69 and CD44 up-regulation, no size change, and promptly died. Thus, negative selection represents an "abortive" activation different from activation-induced cell death of mature T cells.
  • Item
    Thumbnail Image
    Glucocorticoid receptor deficient thymic and peripheral T cells develop normally in adult mice
    Purton, JF ; Zhan, YF ; Liddicoat, DR ; Hardy, CL ; Lew, AM ; Cole, TJ ; Godfrey, DI (WILEY-V C H VERLAG GMBH, 2002-12)
    The involvement of glucocorticoid receptor (GR) signaling in T cell development is highly controversial, with several studies for and against. We have previously demonstrated that GR(-/-) mice, which usually die at birth because of impaired lung development, exhibit normal T cell development, at least in embryonic mice and in fetal thymus organ cultures. To directly investigate the role of GR signaling in adult T cell development, we analyzed the few GR(-/-) mice that occasionally survive birth, and irradiated mice reconstituted with GR(-/-) fetal liver precursors. All thymic and peripheral T cells, as well as other leukocyte lineages, developed and were maintained at normal levels. Anti-CD3-induced cell death of thymocytes in vitro, T cell repertoire heterogeneity and T cell proliferation in response to anti-CD3 stimulation were normal in the absence of GR signaling. Finally, we show that metyrapone, an inhibitor of glucocorticoid synthesis (commonly used to demonstrate a role for glucocorticoids in T cell development), impaired thymocyte development regardless of GR genotype indicating that this reagent inhibits thymocyte development in a glucocorticoid-independent fashion. These data demonstrate that GR signaling is not required for either normal T cell development or peripheral maintenance in embryonic or adult mice.