School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Chloroplast genomes as a tool to resolve red algal phylogenies: a case study in the Nemaliales
    Costa, JF ; Lin, S-M ; Macaya, EC ; Fernandez-Garcia, C ; Verbruggen, H (BIOMED CENTRAL LTD, 2016-10-10)
    BACKGROUND: Obtaining strongly supported phylogenies that permit confident taxonomic and evolutionary interpretations has been a challenge in algal biology. High-throughput sequencing has improved the capacity to generate data and yields more informative datasets. We sequenced and analysed the chloroplast genomes of 22 species of the order Nemaliales as a case study in the use of phylogenomics as an approach to achieve well-supported phylogenies of red algae. RESULTS: Chloroplast genomes of the order Nemaliales are highly conserved, gene-dense and completely syntenic with very few cases of gene loss. Our ML estimation based on 195 genes recovered a completely supported phylogeny, permitting re-classification of the order at various taxonomic levels. Six families are recognised and the placement of several previously contradictory clades is resolved. Two new sub-orders are described, Galaxaurineae and Nemaliineae, based on the early-branching nature and monophyly of the groups, and presence or absence of a pericarp. Analyses of subsets of the data showed that >90 % bootstrap support can be achieved with datasets as small as 2500 nt and that fast and medium evolving genes perform much better when it comes to resolving phylogenetic relationships. CONCLUSIONS: In this study we show that phylogenomics is an efficient and effective approach to investigate phylogenetic relationships. The six currently circumscribed Nemaliales families are clustered into two evolutionary lineages with strong statistical support based on chloroplast phylogenomic analyses. The conserved nature of red algal chloroplast genomes is a convenient and accessible source of data to resolve their ancient relationships.
  • Item
    Thumbnail Image
    The golden paradox - a new heterokont lineage with chloroplasts surrounded by two membranes
    Wetherbee, R ; Jackson, CJ ; Repetti, SI ; Clementson, LA ; Costa, JF ; van de Meene, A ; Crawford, S ; Verbruggen, H ; Graham, L (WILEY, 2019-04)
    A marine, sand-dwelling, golden-brown alga is described from clonal cultures established from a high intertidal pool in southeastern Australia. This tiny, unicellular species, which we call the "golden paradox" (Chrysoparadoxa australica gen. et sp. nov.), is benthic, surrounded by a multilayered cell wall and attached to the substratum by a complex adhesive plug. Each vegetative cell gives rise to a single, naked zoospore with heterokont flagella that settles and may become briefly amoeboid prior to dividing. Daughter cells are initially amoeboid, then either permanently attach and return to the benthic stage or become motile again prior to final settlement. Two deeply lobed chloroplasts occupy opposite ends of the cell and are surrounded by only two membranes. The outer chloroplast membrane is continuous between the two chloroplasts via the outer membrane of the nuclear envelope. Only two membranes occupy the chloroplast-nucleus interface, the inner membrane of the nuclear envelope and the inner chloroplast membrane. A small pyrenoid is found in each chloroplast and closely abuts the nucleus or protrudes into it. It contains an unusual, membrane-bound inclusion that stains with SYBR green but is unlikely to be a nucleomorph. Phylogenies inferred from a 10-gene concatenated alignment show an early-branching position within the PX clade. The unusual morphological features and phylogenetic position indicate C. australica should be classified as a new class, Chrysoparadoxophyceae. Despite an atypical plastid, exploration of the C. australica transcriptome revealed typical heterokont protein targeting to the plastid.