School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 10
  • Item
    Thumbnail Image
    mRNA vaccine against malaria tailored for liver-resident memory T cells
    Ganley, M ; Holz, LE ; Minnell, JJ ; de Menezes, MN ; Burn, OK ; Poa, KCY ; Draper, SL ; English, K ; Chan, STS ; Anderson, RJ ; Compton, BJ ; Marshall, AJ ; Cozijnsen, A ; Chua, YC ; Ge, Z ; Farrand, KJ ; Mamum, JC ; Xu, C ; Cockburn, IA ; Yui, K ; Bertolino, P ; Gras, S ; Le Nours, J ; Rossjohn, J ; Fernandez-Ruiz, D ; McFadden, GI ; Ackerley, DF ; Painter, GF ; Hermans, IF ; Heath, WR (NATURE PORTFOLIO, 2023-09)
    Malaria is caused by Plasmodium species transmitted by Anopheles mosquitoes. Following a mosquito bite, Plasmodium sporozoites migrate from skin to liver, where extensive replication occurs, emerging later as merozoites that can infect red blood cells and cause symptoms of disease. As liver tissue-resident memory T cells (Trm cells) have recently been shown to control liver-stage infections, we embarked on a messenger RNA (mRNA)-based vaccine strategy to induce liver Trm cells to prevent malaria. Although a standard mRNA vaccine was unable to generate liver Trm or protect against challenge with Plasmodium berghei sporozoites in mice, addition of an agonist that recruits T cell help from type I natural killer T cells under mRNA-vaccination conditions resulted in significant generation of liver Trm cells and effective protection. Moreover, whereas previous exposure of mice to blood-stage infection impaired traditional vaccines based on attenuated sporozoites, mRNA vaccination was unaffected, underlining the potential for such a rational mRNA-based strategy in malaria-endemic regions.
  • Item
    No Preview Available
    Complexing CpG adjuvants with cationic liposomes enhances vaccine-induced formation of liver TRM cells
    Valencia-Hernandez, AM ; Zillinger, T ; Ge, Z ; Tan, PS ; Cozijnsen, A ; McFadden, GI ; Lahoud, MH ; Caminschi, I ; Barchet, W ; Heath, WR ; Fernandez-Ruiz, D (ELSEVIER SCI LTD, 2023-01-27)
    Tissue resident memory T cells (TRM cells) can provide effective tissue surveillance and can respond rapidly to infection. Vaccination strategies aimed at generating TRM cells have shown promise against a range of pathogens. We have previously shown that the choice of adjuvant critically influences CD8+ TRM cell formation in the liver. However, the range of adjuvants tested was limited. Here, we assessed the ability of a broad range of adjuvants stimulating membrane (TLR4), endosomal (TLR3, TLR7 and TLR9) and cytosolic (cGAS, RIG-I) pathogen recognition receptors for their capacity to induce CD8+ TRM formation in a subunit vaccination model. We show that CpG oligodeoxynucleotides (ODN) remain the most efficient inducers of liver TRM cells among all adjuvants tested. Moreover, their combination with the cationic liposome DOTAP further enhances the potency, particularly of the class B ODN CpG 1668 and the human TLR9 ligand CpG 2006 (CpG 7909). This study informs the design of efficient liver TRM-based vaccines for their potential translation.
  • Item
    Thumbnail Image
    6"-Modifed α-GalCer-peptide conjugate vaccine candidates protect against liver-stage malaria
    Meijlink, MA ; Chua, YC ; Chan, STS ; Anderson, RJ ; Rosenberg, MW ; Cozijnsen, A ; Mollard, V ; McFadden, G ; Draper, SL ; Holz, LE ; Hermans, IF ; Heath, WR ; Painter, GF ; Compton, BJ (ROYAL SOC CHEMISTRY, 2022-05-11)
    Self-adjuvanting vaccines consisting of peptide epitopes conjugated to immune adjuvants are a powerful way of generating antigen-specific immune responses. We previously showed that a Plasmodium-derived peptide conjugated to a rearranged form of α-galactosylceramide (α-GalCer) could stimulate liver-resident memory T (TRM) cells that were effective killers of liver-stage Plasmodium berghei ANKA (Pba)-infected cells. To investigate if similar or even superior TRM responses can be induced by modifying the α-GalCer adjuvant, we created new conjugate vaccine cadidates by attaching an immunogenic Plasmodium-derived peptide antigen to 6″-substituted α-GalCer analogues. Vaccine synthesis involved developing an efficient route to α-galactosylphytosphingosine (α-GalPhs), from which the prototypical iNKT cell agonist, α-GalCer, and its 6″-deoxy-6″-thio and -amino analogues were derived. Attaching a cathepsin B-cleavable linker to the 6″-modified α-GalCer created pro-adjuvants bearing a pendant ketone group available for peptide conjugation. Optimized reaction conditions were developed that allow for the efficient conjugation of peptide antigens to the pro-adjuvants via oxime ligation to create new glycolipid-peptide (GLP) conjugate vaccines. A single dose of the vaccine candidates induced acute NKT and Plasmodium-specific CD8+ T cell responses that generated potent hepatic TRM responses in mice. Our findings demonstrate that attaching antigenic peptides to 6″-modifed α-GalCer generates powerful self-adjuvanting conjugate vaccine candidates that could potentially control hepatotropic infections such as liver-stage malaria.
  • Item
    Thumbnail Image
    CD8+ T Cell Activation Leads to Constitutive Formation of Liver Tissue-Resident Memory T Cells that Seed a Large and Flexible Niche in the Liver
    Holz, LE ; Prier, JE ; Freestone, D ; Steiner, TM ; English, K ; Johnson, DN ; Mollard, V ; Cozijnsen, A ; Davey, GM ; Godfrey, D ; Yui, K ; Mackay, LK ; Lahoud, MH ; Caminschi, I ; McFadden, G ; Bertolino, P ; Fernandez-Ruiz, D ; Heath, WR (CELL PRESS, 2018-10-02)
    Liver tissue-resident memory T (Trm) cells migrate throughout the sinusoids and are capable of protecting against malaria sporozoite challenge. To gain an understanding of liver Trm cell development, we examined various conditions for their formation. Although liver Trm cells were found in naive mice, their presence was dictated by antigen specificity and required IL-15. Liver Trm cells also formed after adoptive transfer of in vitro-activated but not naive CD8+ T cells, indicating that activation was essential but that antigen presentation within the liver was not obligatory. These Trm cells patrolled the liver sinusoids with a half-life of 36 days and occupied a large niche that could be added to sequentially without effect on subsequent Trm cell cohorts. Together, our findings indicate that liver Trm cells form as a normal consequence of CD8+ T cell activation during essentially any infection but that inflammatory and antigenic signals preferentially tailor their development.
  • Item
    Thumbnail Image
    Plasmodium berghei Hsp90 contains a natural immunogenic I-Ab-restricted antigen common to rodent and human Plasmodium species.
    Enders, MH ; Bayarsaikhan, G ; Ghilas, S ; Chua, YC ; May, R ; de Menezes, MN ; Ge, Z ; Tan, PS ; Cozijnsen, A ; Mollard, V ; Yui, K ; McFadden, GI ; Lahoud, MH ; Caminschi, I ; Purcell, AW ; Schittenhelm, RB ; Beattie, L ; Heath, WR ; Fernandez-Ruiz, D (Elsevier BV, 2021)
    Thorough understanding of the role of CD4 T cells in immunity can be greatly assisted by the study of responses to defined specificities. This requires knowledge of Plasmodium-derived immunogenic epitopes, of which only a few have been identified, especially for the mouse C57BL/6 background. We recently developed a TCR transgenic mouse line, termed PbT-II, that produces CD4+ T cells specific for an MHC class II (I-Ab)-restricted Plasmodium epitope and is responsive to both sporozoites and blood-stage P. berghei. Here, we identify a peptide within the P. berghei heat shock protein 90 as the cognate epitope recognised by PbT-II cells. We show that C57BL/6 mice infected with P. berghei blood-stage induce an endogenous CD4 T cell response specific for this epitope, indicating cells of similar specificity to PbT-II cells are present in the naïve repertoire. Adoptive transfer of in vitro activated TH1-, or particularly TH2-polarised PbT-II cells improved control of P. berghei parasitemia in C57BL/6 mice and drastically reduced the onset of experimental cerebral malaria. Our results identify a versatile, potentially protective MHC-II restricted epitope useful for exploration of CD4 T cell-mediated immunity and vaccination strategies against malaria.
  • Item
    Thumbnail Image
    Mechanisms and targets of Fcγ-receptor mediated immunity to malaria sporozoites
    Feng, G ; Wines, BD ; Kurtovic, L ; Chan, J-A ; Boeuf, P ; Mollard, V ; Cozijnsen, A ; Drew, DR ; Center, RJ ; Marshall, DL ; Chishimba, S ; McFadden, G ; Dent, AE ; Chelimo, K ; Boyle, MJ ; Kazura, JW ; Hogarth, PM ; Beeson, JG (NATURE PORTFOLIO, 2021-03-19)
    A highly protective vaccine will greatly facilitate achieving and sustaining malaria elimination. Understanding mechanisms of antibody-mediated immunity is crucial for developing vaccines with high efficacy. Here, we identify key roles in humoral immunity for Fcγ-receptor (FcγR) interactions and opsonic phagocytosis of sporozoites. We identify a major role for neutrophils in mediating phagocytic clearance of sporozoites in peripheral blood, whereas monocytes contribute a minor role. Antibodies also promote natural killer cell activity. Mechanistically, antibody interactions with FcγRIII appear essential, with FcγRIIa also required for maximum activity. All regions of the circumsporozoite protein are targets of functional antibodies against sporozoites, and N-terminal antibodies have more activity in some assays. Functional antibodies are slowly acquired following natural exposure to malaria, being present among some exposed adults, but uncommon among children. Our findings reveal targets and mechanisms of immunity that could be exploited in vaccine design to maximize efficacy.
  • Item
    Thumbnail Image
    Alternative splicing is required for stage differentiation in malaria parasites
    Yeoh, LM ; Goodman, CD ; Mollard, V ; McHugh, E ; Lee, VV ; Sturm, A ; Cozijnsen, A ; McFadden, GI ; Ralph, SA (BMC, 2019-08-01)
    BACKGROUND: In multicellular organisms, alternative splicing is central to tissue differentiation and identity. Unicellular protists lack multicellular tissue but differentiate into variable cell types during their life cycles. The role of alternative splicing in transitions between cell types and establishing cellular identity is currently unknown in any unicellular organism. RESULTS: To test whether alternative splicing in unicellular protists plays a role in cellular differentiation, we conduct RNA-seq to compare splicing in female and male sexual stages to asexual intraerythrocytic stages in the rodent malaria parasite Plasmodium berghei. We find extensive changes in alternative splicing between stages and a role for alternative splicing in sexual differentiation. Previously, general gametocyte differentiation was shown to be modulated by specific transcription factors. Here, we show that alternative splicing establishes a subsequent layer of regulation, controlling genes relating to consequent sex-specific differentiation of gametocytes. CONCLUSIONS: We demonstrate that alternative splicing is reprogrammed during cellular differentiation of a unicellular protist. Disruption of an alternative splicing factor, PbSR-MG, perturbs sex-specific alternative splicing and decreases the ability of the parasites to differentiate into male gametes and oocysts, thereby reducing transmission between vertebrate and insect hosts. Our results reveal alternative splicing as an integral, stage-specific phenomenon in these protists and as a regulator of cellular differentiation that arose early in eukaryotic evolution.
  • Item
    Thumbnail Image
    Quantitative analysis of Plasmodium ookinete motion in three dimensions suggests a critical role for cell shape in the biomechanics of malaria parasite gliding motility
    Kan, A ; Tan, Y-H ; Angrisano, F ; Hanssen, E ; Rogers, KL ; Whitehead, L ; Mollard, VP ; Cozijnsen, A ; Delves, MJ ; Crawford, S ; Sinden, RE ; McFadden, GI ; Leckie, C ; Bailey, J ; Baum, J (WILEY-BLACKWELL, 2014-05)
    Motility is a fundamental part of cellular life and survival, including for Plasmodium parasites--single-celled protozoan pathogens responsible for human malaria. The motile life cycle forms achieve motility, called gliding, via the activity of an internal actomyosin motor. Although gliding is based on the well-studied system of actin and myosin, its core biomechanics are not completely understood. Currently accepted models suggest it results from a specifically organized cellular motor that produces a rearward directional force. When linked to surface-bound adhesins, this force is passaged to the cell posterior, propelling the parasite forwards. Gliding motility is observed in all three life cycle stages of Plasmodium: sporozoites, merozoites and ookinetes. However, it is only the ookinetes--formed inside the midgut of infected mosquitoes--that display continuous gliding without the necessity of host cell entry. This makes them ideal candidates for invasion-free biomechanical analysis. Here we apply a plate-based imaging approach to study ookinete motion in three-dimensional (3D) space to understand Plasmodium cell motility and how movement facilitates midgut colonization. Using single-cell tracking and numerical analysis of parasite motion in 3D, our analysis demonstrates that ookinetes move with a conserved left-handed helical trajectory. Investigation of cell morphology suggests this trajectory may be based on the ookinete subpellicular cytoskeleton, with complementary whole and subcellular electron microscopy showing that, like their motion paths, ookinetes share a conserved left-handed corkscrew shape and underlying twisted microtubular architecture. Through comparisons of 3D movement between wild-type ookinetes and a cytoskeleton-knockout mutant we demonstrate that perturbation of cell shape changes motion from helical to broadly linear. Therefore, while the precise linkages between cellular architecture and actomyosin motor organization remain unknown, our analysis suggests that the molecular basis of cell shape may, in addition to motor force, be a key adaptive strategy for malaria parasite dissemination and, as such, transmission.
  • Item
    Thumbnail Image
    CD8+ T Cells from a Novel T Cell Receptor Transgenic Mouse Induce Liver-Stage Immunity That Can Be Boosted by Blood-Stage Infection in Rodent Malaria
    Lau, LS ; Fernandez-Ruiz, D ; Mollard, V ; Sturm, A ; Neller, MA ; Cozijnsen, A ; Gregory, JL ; Davey, GM ; Jones, CM ; Lin, Y-H ; Haque, A ; Engwerda, CR ; Nie, CQ ; Hansen, DS ; Murphy, KM ; Papenfuss, AT ; Miles, JJ ; Burrows, SR ; de Koning-Ward, T ; McFadden, GI ; Carbone, FR ; Crabb, BS ; Heath, WR ; Mota, MM (PUBLIC LIBRARY SCIENCE, 2014-05)
    To follow the fate of CD8+ T cells responsive to Plasmodium berghei ANKA (PbA) infection, we generated an MHC I-restricted TCR transgenic mouse line against this pathogen. T cells from this line, termed PbT-I T cells, were able to respond to blood-stage infection by PbA and two other rodent malaria species, P. yoelii XNL and P. chabaudi AS. These PbT-I T cells were also able to respond to sporozoites and to protect mice from liver-stage infection. Examination of the requirements for priming after intravenous administration of irradiated sporozoites, an effective vaccination approach, showed that the spleen rather than the liver was the main site of priming and that responses depended on CD8α+ dendritic cells. Importantly, sequential exposure to irradiated sporozoites followed two days later by blood-stage infection led to augmented PbT-I T cell expansion. These findings indicate that PbT-I T cells are a highly versatile tool for studying multiple stages and species of rodent malaria and suggest that cross-stage reactive CD8+ T cells may be utilized in liver-stage vaccine design to enable boosting by blood-stage infections.
  • Item
    Thumbnail Image
    Mitochondrial ATP synthase is dispensable in blood-stage Plasmodium berghei rodent malaria but essential in the mosquito phase
    Sturm, A ; Mollard, V ; Cozijnsen, A ; Goodman, CD ; McFadden, GI (NATL ACAD SCIENCES, 2015-08-18)
    Mitochondrial ATP synthase is driven by chemiosmotic oxidation of pyruvate derived from glycolysis. Blood-stage malaria parasites eschew chemiosmosis, instead relying almost solely on glycolysis for their ATP generation, which begs the question of whether mitochondrial ATP synthase is necessary during the blood stage of the parasite life cycle. We knocked out the mitochondrial ATP synthase β subunit gene in the rodent malaria parasite, Plasmodium berghei, ablating the protein that converts ADP to ATP. Disruption of the β subunit gene of the ATP synthase only marginally reduced asexual blood-stage parasite growth but completely blocked mouse-to-mouse transmission via Anopheles stephensi mosquitoes. Parasites lacking the β subunit gene of the ATP synthase generated viable gametes that fuse and form ookinetes but cannot progress beyond this stage. Ookinetes lacking the β subunit gene of the ATP synthase had normal motility but were not viable in the mosquito midgut and never made oocysts or sporozoites, thereby abrogating transmission to naive mice via mosquito bite. We crossed the self-infertile ATP synthase β subunit knockout parasites with a male-deficient, self-infertile strain of P. berghei, which restored fertility and production of oocysts and sporozoites, which demonstrates that mitochondrial ATP synthase is essential for ongoing viability through the female, mitochondrion-carrying line of sexual reproduction in P. berghei malaria. Perturbation of ATP synthase completely blocks transmission to the mosquito vector and could potentially be targeted for disease control.