School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Large Diversity of Nonstandard Genes and Dynamic Evolution of Chloroplast Genomes in Siphonous Green Algae (Bryopsidales, Chlorophyta)
    Cremen, MCM ; Leliaert, F ; Marcelino, VR ; Verbruggen, H (OXFORD UNIV PRESS, 2018-04)
    Chloroplast genomes have undergone tremendous alterations through the evolutionary history of the green algae (Chloroplastida). This study focuses on the evolution of chloroplast genomes in the siphonous green algae (order Bryopsidales). We present five new chloroplast genomes, which along with existing sequences, yield a data set representing all but one families of the order. Using comparative phylogenetic methods, we investigated the evolutionary dynamics of genomic features in the order. Our results show extensive variation in chloroplast genome architecture and intron content. Variation in genome size is accounted for by the amount of intergenic space and freestanding open reading frames that do not show significant homology to standard plastid genes. We show the diversity of these nonstandard genes based on their conserved protein domains, which are often associated with mobile functions (reverse transcriptase/intron maturase, integrases, phage- or plasmid-DNA primases, transposases, integrases, ligases). Investigation of the introns showed proliferation of group II introns in the early evolution of the order and their subsequent loss in the core Halimedineae, possibly through RT-mediated intron loss.
  • Item
    Thumbnail Image
    High-throughput sequencing for algal systematics
    Oliveira, MC ; Repetti, SI ; Iha, C ; Jackson, CJ ; Diaz-Tapia, P ; Lubiana, KMF ; Cassano, V ; Costa, JF ; Cremen, MCM ; Marcelino, VR ; Verbruggen, H (TAYLOR & FRANCIS LTD, 2018-01-01)
    In recent years, the use of molecular data in algal systematics has increased as high-throughput sequencing (HTS) has become more accessible, generating very large datasets at a reasonable cost. In this perspectives paper, our goal is to describe how HTS technologies can advance algal systematics. Following an introduction to some common HTS technologies, we discuss how metabarcoding can accelerate algal species discovery. We show how various HTS methods can be applied to generate datasets for accurate species delimitation, and how HTS can be applied to historical type specimens to assist the nomenclature process. Finally, we discuss how HTS data such as organellar genomes and transcriptomes can be used to construct well-resolved phylogenies, leading to a stable and natural classification of algal groups. We include examples of bioinformatic workflows that may be applied to process data for each purpose, along with common programs used to achieve each step. We also discuss possible strategies and the new skill set that will be required to fully embrace HTS as a part of algal systematics, along with considerations of cost and experimental design. HTS technology has revolutionized many fields in biology, and will certainly do the same in algal systematics.
  • Item
    Thumbnail Image
    Reassessment of the classification of Bryopsidales (Chlorophyta) based on chloroplast phylogenomic analyses
    Cremen, MCM ; Leliaert, F ; West, J ; Lam, DW ; Shimada, S ; Lopez-Bautista, JM ; Verbruggen, H (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2019-01)
    The Bryopsidales is a morphologically diverse group of mainly marine green macroalgae characterized by a siphonous structure. The order is composed of three suborders - Ostreobineae, Bryopsidineae, and Halimedineae. While previous studies improved the higher-level classification of the order, the taxonomic placement of some genera in Bryopsidineae (Pseudobryopsis and Lambia) as well as the relationships between the families of Halimedineae remains uncertain. In this study, we re-assess the phylogeny of the order with datasets derived from chloroplast genomes, drastically increasing the taxon sampling by sequencing 32 new chloroplast genomes. The phylogenies presented here provided good support for the major lineages (suborders and most families) in Bryopsidales. In Bryopsidineae, Pseudobryopsis hainanensis was inferred as a distinct lineage from the three established families allowing us to establish the family Pseudobryopsidaceae. The Antarctic species Lambia antarctica was shown to be an early-branching lineage in the family Bryopsidaceae. In Halimedineae, we revealed several inconsistent phylogenetic positions of macroscopic taxa, and several entirely new lineages of microscopic species. A new classification scheme is proposed, which includes the merger of the families Pseudocodiaceae, Rhipiliaceae and Udoteaceae into a more broadly circumscribed Halimedaceae, and the establishment of tribes for the different lineages found therein. In addition, the deep-water genus Johnson-sea-linkia, currently placed in Rhipiliopsis, was reinstated based on our phylogeny.
  • Item
    Thumbnail Image
    PHYLOGENETIC POSITION OF THE CORAL SYMBIONT OSTREOBIUM (ULVOPHYCEAE) INFERRED FROM CHLOROPLAST GENOME DATA
    Verbruggen, H ; Marcelino, VR ; Guiry, MD ; Cremen, MCM ; Jackson, CJ ; Graham, L (WILEY, 2017-08)
    The green algal genus Ostreobium is an important symbiont of corals, playing roles in reef decalcification and providing photosynthates to the coral during bleaching events. A chloroplast genome of a cultured strain of Ostreobium was available, but low taxon sampling and Ostreobium's early-branching nature left doubt about its phylogenetic position. Here, we generate and describe chloroplast genomes from four Ostreobium strains as well as Avrainvillea mazei and Neomeris sp., strategically sampled early-branching lineages in the Bryopsidales and Dasycladales respectively. At 80,584 bp, the chloroplast genome of Ostreobium sp. HV05042 is the most compact yet found in the Ulvophyceae. The Avrainvillea chloroplast genome is ~94 kbp and contains introns in infA and cysT that have nearly complete sequence identity except for an open reading frame (ORF) in infA that is not present in cysT. In line with other bryopsidalean species, it also contains regions with possibly bacteria-derived ORFs. The Neomeris data did not assemble into a canonical circular chloroplast genome but a large number of contigs containing fragments of chloroplast genes and showing evidence of long introns and intergenic regions, and the Neomeris chloroplast genome size was estimated to exceed 1.87 Mb. Chloroplast phylogenomics and 18S nrDNA data showed strong support for the Ostreobium lineage being sister to the remaining Bryopsidales. There were differences in branch support when outgroups were varied, but the overall support for the placement of Ostreobium was strong. These results permitted us to validate two suborders and introduce a third, the Ostreobineae.
  • Item
    Thumbnail Image
    Evolutionary Dynamics of Chloroplast Genomes in Low Light: A Case Study of the Endolithic Green Alga Ostreobium quekettii
    Marcelino, VR ; Cremen, MCM ; Jackson, CJ ; Larkum, AAW ; Verbruggen, H (OXFORD UNIV PRESS, 2016-09)
    Some photosynthetic organisms live in extremely low light environments. Light limitation is associated with selective forces as well as reduced exposure to mutagens, and over evolutionary timescales it can leave a footprint on species' genomes. Here, we present the chloroplast genomes of four green algae (Bryopsidales, Ulvophyceae), including the endolithic (limestone-boring) alga Ostreobium quekettii, which is a low light specialist. We use phylogenetic models and comparative genomic tools to investigate whether the chloroplast genome of Ostreobium corresponds to our expectations of how low light would affect genome evolution. Ostreobium has the smallest and most gene-dense chloroplast genome among Ulvophyceae reported to date, matching our expectation that light limitation would impose resource constraints reflected in the chloroplast genome architecture. Rates of molecular evolution are significantly slower along the phylogenetic branch leading to Ostreobium, in agreement with the expected effects of low light and energy levels on molecular evolution. We expected the ability of Ostreobium to perform photosynthesis in very low light to be associated with positive selection in genes related to the photosynthetic machinery, but instead, we observed that these genes may be under stronger purifying selection. Besides shedding light on the genome dynamics associated with a low light lifestyle, this study helps to resolve the role of environmental factors in shaping the diversity of genome architectures observed in nature.