School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Aedes aegypti has spatially structured and seasonally stable populations in Yogyakarta, Indonesia
    Rasic, G ; Endersby-Harshman, N ; Tantowijoyo, W ; Goundar, A ; White, V ; Yang, Q ; Filipovic, I ; Johnson, P ; Hoffmann, AA ; Arguni, E (BMC, 2015-12-01)
    BACKGROUND: Dengue fever, the most prevalent global arboviral disease, represents an important public health problem in Indonesia. Control of dengue relies on the control of its main vector, the mosquito Aedes aegypti, yet nothing is known about the population history and genetic structure of this insect in Indonesia. Our aim was to assess the spatio-temporal population genetic structure of Ae. aegypti in Yogyakarta, a densely populated region on Java with common dengue outbreaks. METHODS: We used multiple marker systems (microsatellites, nuclear and mitochondrial genome-wide single nucleotide polymorphisms generated via Restriction-site Associated DNA sequencing) to analyze 979 Ae. aegypti individuals collected from the Yogyakarta city and the surrounding hamlets during the wet season in 2011 and the following dry season in 2012. We employed individual- and group-based approaches for inferring genetic structure. RESULTS: We found that Ae. aegypti in Yogyakarta has spatially structured and seasonally stable populations. The spatial structuring was significant for the nuclear and mitochondrial markers, while the temporal structuring was non-significant. Nuclear markers identified three main genetic clusters, showing that hamlets have greater genetic isolation from each other and from the inner city sites. However, one hamlet experienced unrestricted mosquito interbreeding with the inner city, forming a single genetic cluster. Genetic distance was poorly correlated with the spatial distance among mosquito samples, suggesting stronger influence of human-assisted gene flow than active mosquito movement on spatial genetic structure. A star-shaped mitochondrial haplotype network and a significant R(2) test statistic (R(2) = 0.0187, P = 0.001) support the hypothesis that Ae. aegypti in Yogyakarta originated from a small or homogeneous source and has undergone a relatively recent demographic expansion. CONCLUSION: We report the first insights into the spatio-temporal genetic structure and the underlying processes in the dengue fever mosquito from Yogyakarta, Indonesia. Our results provide valuable information on the effectiveness of local control measures as well as guidelines for the implementation of novel biocontrol strategies such as release of Wolbachia-infected mosquitoes.
  • Item
    Thumbnail Image
    Contrasting genetic structure between mitochondrial and nuclear markers in the dengue fever mosquito from Rio de Janeiro: implications for vector control
    Rasic, G ; Schama, R ; Powell, R ; Maciel-de Freitas, R ; Endersby-Harshman, NM ; Filipovic, I ; Sylvestre, G ; Maspero, RC ; Hoffmann, AA (WILEY, 2015-10)
    Dengue is the most prevalent global arboviral disease that affects over 300 million people every year. Brazil has the highest number of dengue cases in the world, with the most severe epidemics in the city of Rio de Janeiro (Rio). The effective control of dengue is critically dependent on the knowledge of population genetic structuring in the primary dengue vector, the mosquito Aedes aegypti. We analyzed mitochondrial and nuclear genomewide single nucleotide polymorphism markers generated via Restriction-site Associated DNA sequencing, as well as traditional microsatellite markers in Ae. aegypti from Rio. We found four divergent mitochondrial lineages and a strong spatial structuring of mitochondrial variation, in contrast to the overall nuclear homogeneity across Rio. Despite a low overall differentiation in the nuclear genome, we detected strong spatial structure for variation in over 20 genes that have a significantly altered expression in response to insecticides, xenobiotics, and pathogens, including the novel biocontrol agent Wolbachia. Our results indicate that high genetic diversity, spatially unconstrained admixing likely mediated by male dispersal, along with locally heterogeneous genetic variation that could affect insecticide resistance and mosquito vectorial capacity, set limits to the effectiveness of measures to control dengue fever in Rio.