School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Testing the niche-breadth-range-size hypothesis: habitat specialization vs. performance in Australian alpine daisies
    Hirst, MJ ; Griffin, PC ; Sexton, JP ; Hoffmann, AA (WILEY, 2017-10)
    Relatively common species within a clade are expected to perform well across a wider range of conditions than their rarer relatives, yet experimental tests of this "niche-breadth-range-size" hypothesis remain surprisingly scarce. Rarity may arise due to trade-offs between specialization and performance across a wide range of environments. Here we use common garden and reciprocal transplant experiments to test the niche-breadth-range-size hypothesis, focusing on four common and three rare endemic alpine daisies (Brachyscome spp.) from the Australian Alps. We used three experimental contexts: (1) alpine reciprocal seedling experiment, a test of seedling survival and growth in three alpine habitat types differing in environmental quality and species diversity; (2) warm environment common garden, a test of whether common daisy species have higher growth rates and phenotypic plasticity, assessed in a common garden in a warmer climate and run simultaneously with experiment 1; and (3) alpine reciprocal seed experiment, a test of seed germination capacity and viability in the same three alpine habitat types as in experiment 1. In the alpine reciprocal seedling experiment, survival of all species was highest in the open heathland habitat where overall plant diversity is high, suggesting a general, positive response to a relatively productive, low-stress environment. We found only partial support for higher survival of rare species in their habitats of origin. In the warm environment common garden, three common daisies exhibited greater growth and biomass than two rare species, but the other rare species performed as well as the common species. In the alpine reciprocal seed experiment, common daisies exhibited higher germination across most habitats, but rare species maintained a higher proportion of viable seed in all conditions, suggesting different life history strategies. These results indicate that some but not all rare, alpine endemics exhibit stress tolerance at the cost of reduced growth rates in low-stress environments compared to common species. Finally, these findings suggest the seed stage is important in the persistence of rare species, and they provide only weak support at the seedling stage for the niche-breadth-range-size hypothesis.
  • Item
    Thumbnail Image
    Testing the environmental warming responses of Brachyscome daisy species using a common garden approach
    Hirst, MJ ; Griffin, PC ; Wu, L-H ; Hoffmann, AA (WILEY, 2020-09)
    Abstract As temperatures increase in a warming world, there will be different responses among related plant species, with some species able to increase growth rate under warmer conditions and others less likely. Here, we identify survival and growth parameters in a group of 19 related Australian daisies from the genera Brachyscome and Pembertonia when exposed to higher soil temperature, focusing particularly on species from the alpine environment. We used a common garden approach to measure growth and survival under warming. We tested for the effects of evolutionary history by investigating phylogeny and testing for a phylogenetic signal, and for the effects of ecological history by considering climatic variables associated with species distributions in their native range. Evolutionary history did not have a detectable effect on warming responses. While there was a moderate signal for plant growth in the absence of warming, there was no signal for growth changes in response to warming, despite variability among species to warming that ranged from positive to negative growth responses. There was no strong effect of climate context, as species that showed a positive response to warming did not necessarily originate from hotter environments. In fact, several species from hot environments grew relatively poorly when exposed to higher soil temperature. However, species endemic to alpine areas were less likely to benefit from warming than widespread species. We found a strong phylogenetic signal for climate history, in that closely related species tend to occur in areas with similar annual variability in precipitation. Species differences in response to soil warming were variable and difficult to link to climate conditions except for the poor response of alpine endemics. There was no significant association between survival and warming responses of species. However, as some species showed weak growth responses, this may reduce their fitness into the future.