School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Fungicides have transgenerational effects on Rhopalosiphum padi but not their endosymbionts
    Chirgwin, E ; Yang, Q ; Umina, PA ; Gill, A ; Soleimannejad, S ; Gu, X ; Ross, P ; Hoffmann, AA (JOHN WILEY & SONS LTD, 2022-11)
  • Item
    Thumbnail Image
    Genomic and Phenotypic Comparisons Reveal Distinct Variants of Wolbachia Strain wAlbB
    Martinez, J ; Ross, PA ; Gu, X ; Ant, TH ; Murdochy, SM ; Tong, L ; Filipe, ADS ; Hoffmann, AA ; Sinkins, SP ; Buan, NR (AMER SOC MICROBIOLOGY, 2022-11-22)
    The intracellular bacterium Wolbachia inhibits virus replication and is being harnessed around the world to fight mosquito-borne diseases through releases of mosquitoes carrying the symbiont. Wolbachia strains vary in their ability to invade mosquito populations and suppress viruses in part due to differences in their density within the insect and associated fitness costs. Using whole-genome sequencing, we demonstrate the existence of two variants in wAlbB, a Wolbachia strain being released in natural populations of Aedes aegypti mosquitoes. The two variants display striking differences in genome architecture and gene content. Differences in the presence/absence of 52 genes between variants include genes located in prophage regions and others potentially involved in controlling the symbiont's density. Importantly, we show that these genetic differences correlate with variation in wAlbB density and its tolerance to heat stress, suggesting that different wAlbB variants may be better suited for field deployment depending on local environmental conditions. Finally, we found that the wAlbB genome remained stable following its introduction in a Malaysian mosquito population. Our results highlight the need for further genomic and phenotypic characterization of Wolbachia strains in order to inform ongoing Wolbachia-based programs and improve the selection of optimal strains in future field interventions. IMPORTANCE Dengue is a viral disease transmitted by Aedes mosquitoes that threatens around half of the world population. Recent advances in dengue control involve the introduction of Wolbachia bacterial symbionts with antiviral properties into mosquito populations, which can lead to dramatic decreases in the incidence of the disease. In light of these promising results, there is a crucial need to better understand the factors affecting the success of such strategies, in particular the choice of Wolbachia strain for field releases and the potential for evolutionary changes. Here, we characterized two variants of a Wolbachia strain used for dengue control that differ at the genomic level and in their ability to replicate within the mosquito. We also found no evidence for the evolution of the symbiont within the 2 years following its deployment in Malaysia. Our results have implications for current and future Wolbachia-based health interventions.
  • Item
    Thumbnail Image
    A wMel Wolbachia variant in Aedes aegypti from field-collected Drosophila melanogaster with increased phenotypic stability under heat stress
    Gu, X ; Ross, PA ; Rodriguez-Andres, J ; Robinson, KL ; Yang, Q ; Lau, M-J ; Hoffmann, AA (WILEY, 2022-04)
    Mosquito-borne diseases remain a major cause of morbidity and mortality. Population replacement strategies involving the wMel strain of Wolbachia are being used widely to control mosquito-borne diseases. However, these strategies may be influenced by temperature because wMel is vulnerable to heat. wMel infections in Drosophila melanogaster are genetically diverse, but few transinfections of wMel variants have been generated in Aedes aegypti. Here, we successfully transferred a wMel variant (termed wMelM) originating from a field-collected D. melanogaster into Ae. aegypti. The new wMelM variant (clade I) is genetically distinct from the original wMel transinfection (clade III), and there are no genomic differences between wMelM in its original and transinfected host. We compared wMelM with wMel in its effects on host fitness, temperature tolerance, Wolbachia density, vector competence, cytoplasmic incompatibility and maternal transmission under heat stress in a controlled background. wMelM showed a higher heat tolerance than wMel, likely due to higher overall densities within the mosquito. Both wMel variants had minimal host fitness costs, complete cytoplasmic incompatibility and maternal transmission, and dengue virus blocking under laboratory conditions. Our results highlight phenotypic differences between Wolbachia variants and wMelM shows potential as an alternative strain in areas with strong seasonal temperature fluctuations.
  • Item
    Thumbnail Image
    A decade of stability for wMel Wolbachia in natural Aedes aegypti populations
    Ross, PP ; Robinson, KM ; Yang, Q ; Callahan, AA ; Schmidt, T ; Axford, J ; Coquilleau, MA ; Staunton, K ; Townsend, M ; Ritchie, S ; Lau, M-J ; Gu, X ; Hoffmann, A ; Dimopoulos, G (PUBLIC LIBRARY SCIENCE, 2022-02-23)
    Mosquitoes carrying Wolbachia endosymbionts are being released in many countries for arbovirus control. The wMel strain of Wolbachia blocks Aedes-borne virus transmission and can spread throughout mosquito populations by inducing cytoplasmic incompatibility. Aedes aegypti mosquitoes carrying wMel were first released into the field in Cairns, Australia, over a decade ago, and with wider releases have resulted in the near elimination of local dengue transmission. The long-term stability of Wolbachia effects is critical for ongoing disease suppression, requiring tracking of phenotypic and genomic changes in Wolbachia infections following releases. We used a combination of field surveys, phenotypic assessments, and Wolbachia genome sequencing to show that wMel has remained stable in its effects for up to a decade in Australian Ae. aegypti populations. Phenotypic comparisons of wMel-infected and uninfected mosquitoes from near-field and long-term laboratory populations suggest limited changes in the effects of wMel on mosquito fitness. Treating mosquitoes with antibiotics used to cure the wMel infection had limited effects on fitness in the next generation, supporting the use of tetracycline for generating uninfected mosquitoes without off-target effects. wMel has a temporally stable within-host density and continues to induce complete cytoplasmic incompatibility. A comparison of wMel genomes from pre-release (2010) and nine years post-release (2020) populations show few genomic differences and little divergence between release locations, consistent with the lack of phenotypic changes. These results indicate that releases of Wolbachia-infected mosquitoes for population replacement are likely to be effective for many years, but ongoing monitoring remains important to track potential evolutionary changes.