School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    Efficient effort allocation in line-transect distance sampling of high-density species: When to walk further, measure less-often and gain precision
    Knights, K ; McCarthy, MA ; Camac, J ; Guillera-Arroita, G (WILEY, 2021-06)
    Abstract Line‐transect distance sampling is widely used to estimate population densities using distances of observed targets from transect lines to model detectability. When the target taxa are high density, the frequent measuring of distances may make the method seem impractical. We present a method that improves the efficiency of distance sampling when the target species occurs at high density. Only a proportion of targets are measured to model the detection function, and the time saved on the survey is then used to cover a longer total length of transect and accrue a larger ‘count only’ sample. This approach can improve the precision of the population density estimate when the cost of measuring the distance to a detected target is more than half the cost of walking to the next target. We find the optimal proportion of distances to measure that minimises the variance of the density estimate for a fixed survey budget. We quantify how much this optimised strategy increases the precision of the density estimate compared with conventional line‐transect distance sampling. We then use simulated distance sampling data to test our expressions, and illustrate circumstances under which the optimised approach would be beneficial using distance sampling data on high‐density plants. The simulations indicate that the optimised method delivers benefits in precision, but the magnitude of the benefit is lower than predicted from our expressions, which are based on an asymptotic approximation of the variance. We apply an adjustment to the predicted benefit equation to account for this difference, and show that, in all three plant case studies, the optimised approach could improve the precision gained from a distance sampling survey between 20% and 50%. This new approach could broaden the ecological contexts in which distance sampling is applied, to include estimation of densities of abundant taxa where plots are conventionally used. The method may have interesting applications for other survey types, including multispecies surveys or those using cues or signs that occur at high density.
  • Item
    Thumbnail Image
    Defining and evaluating predictions of joint species distribution models
    Wilkinson, DP ; Golding, N ; Guillera-Arroita, G ; Tingley, R ; McCarthy, MA ; Freckleton, R (WILEY, 2021-03)
    Abstract Joint species distribution models (JSDMs) simultaneously model the distributions of multiple species, while accounting for residual co‐occurrence patterns. Despite increasing adoption of JSDMs in the literature, the question of how to define and evaluate JSDM predictions has only begun to be explored. We define four different JSDM prediction types that correspond to different aspects of species distribution and community assemblage processes. Marginal predictions are environment‐only predictions akin to predictions from single‐species models; joint predictions simultaneously predict entire community assemblages; and conditional marginal and conditional joint predictions are made at the species or assemblage level, conditional on the known occurrence state of one or more species at a site. We define five different classes of metrics that can be used to evaluate these types of predictions: threshold‐dependent, threshold‐independent, community dissimilarity, species richness and likelihood metrics. We illustrate different prediction types and evaluation metrics using a case study in which we fit a JSDM to a frog occurrence dataset collected in Melbourne, Australia. Joint species distribution models present opportunities to investigate the facets of species distribution and community assemblage processes that are not possible to explore with single‐species models. We show that there are a variety of different metrics available to evaluate JSDM predictions, and that choice of prediction type and evaluation metric should closely match the questions being investigated.
  • Item
    Thumbnail Image
    Traits explain invasion of alien plants into tropical rainforests
    Junaedi, DI ; Guillera-Arroita, G ; Vesk, PA ; McCarthy, MA ; Burgman, MA ; Catford, JA (WILEY, 2021-05)
    1. The establishment of new botanic gardens in tropical regions highlights a need for weed risk assessment tools suitable for tropical ecosystems. The relevance of plant traits for invasion into tropical rainforests has not been well studied.2. Working in and around four botanic gardens in Indonesia where 590 alien species have been planted, we estimated the effect of four plant traits, plus time since species introduction, on: (a) the naturalization probability and (b) abundance (density) of naturalized species in adjacent native tropical rainforests; and (c) the distance that naturalized alien plants have spread from the botanic gardens.3. We found that specific leaf area (SLA) strongly differentiated 23 naturalized from 78 non-naturalized alien species (randomly selected from 577 non-naturalized species) in our study. These trends may indicate that aliens with high SLA, which had a higher probability of naturalization, benefit from at least two factors when establishing in tropical forests: high growth rates and occupation of forest gaps. Naturalized aliens had high SLA and tended to be short. However, plant height was not significantly related to species' naturalization probability when considered alongside other traits.4. Alien species that were present in the gardens for over 30 years and those with small seeds also had higher probabilities of becoming naturalized, indicating that garden plants can invade the understorey of closed canopy tropical rainforests, especially when invading species are shade tolerant and have sufficient time to establish.5. On average, alien species that were not animal dispersed spread 78 m further into the forests and were more likely to naturalize than animal-dispersed species. We did not detect relationships between the measured traits and estimated density of naturalized aliens in the adjacent forests.6. Synthesis: Traits were able to differentiate alien species from botanic gardens that naturalized in native forest from those that did not; this is promising for developing trait-based risk assessment in the tropics. To limit the risk of invasion and spread into adjacent native forests, we suggest tropical botanic gardens avoid planting alien species with fast carbon capture strategies and those that are shade tolerant.
  • Item
    Thumbnail Image
    Using decision science to evaluate global biodiversity indices
    Watermeyer, KE ; Bal, P ; Burgass, MJ ; Bland, LM ; Collen, B ; Hallam, C ; Kelly, LT ; McCarthy, MA ; Regan, TJ ; Stevenson, S ; Wintle, BA ; Nicholson, E ; Guillera-Arroita, G (WILEY, 2021-04)
    Global biodiversity indices are used to measure environmental change and progress toward conservation goals, yet few indices have been evaluated comprehensively for their capacity to detect trends of interest, such as declines in threatened species or ecosystem function. Using a structured approach based on decision science, we qualitatively evaluated 9 indices commonly used to track biodiversity at global and regional scales against 5 criteria relating to objectives, design, behavior, incorporation of uncertainty, and constraints (e.g., costs and data availability). Evaluation was based on reference literature for indices available at the time of assessment. We identified 4 key gaps in indices assessed: pathways to achieving goals (means objectives) were not always clear or relevant to desired outcomes (fundamental objectives); index testing and understanding of expected behavior was often lacking; uncertainty was seldom acknowledged or accounted for; and costs of implementation were seldom considered. These gaps may render indices inadequate in certain decision-making contexts and are problematic for indices linked with biodiversity targets and sustainability goals. Ensuring that index objectives are clear and their design is underpinned by a model of relevant processes are crucial in addressing the gaps identified by our assessment. Uptake and productive use of indices will be improved if index performance is tested rigorously and assumptions and uncertainties are clearly communicated to end users. This will increase index accuracy and value in tracking biodiversity change and supporting national and global policy decisions, such as the post-2020 global biodiversity framework of the Convention on Biological Diversity.
  • Item
    Thumbnail Image
    Optimal surveillance strategy for invasive species management when surveys stop after detection
    Guillera-Arroita, G ; Hauser, CE ; McCarthy, MA (WILEY, 2014-05)
    Invasive species are a cause for concern in natural and economic systems and require both monitoring and management. There is a trade-off between the amount of resources spent on surveying for the species and conducting early management of occupied sites, and the resources that are ultimately spent in delayed management at sites where the species was present but undetected. Previous work addressed this optimal resource allocation problem assuming that surveys continue despite detection until the initially planned survey effort is consumed. However, a more realistic scenario is often that surveys stop after detection (i.e., follow a "removal" sampling design) and then management begins. Such an approach will indicate a different optimal survey design and can be expected to be more efficient. We analyze this case and compare the expected efficiency of invasive species management programs under both survey methods. We also evaluate the impact of mis-specifying the type of sampling approach during the program design phase. We derive analytical expressions that optimize resource allocation between monitoring and management in surveillance programs when surveys stop after detection. We do this under a scenario of unconstrained resources and scenarios where survey budget is constrained. The efficiency of surveillance programs is greater if a "removal survey" design is used, with larger gains obtained when savings from early detection are high, occupancy is high, and survey costs are not much lower than early management costs at a site. Designing a surveillance program disregarding that surveys stop after detection can result in an efficiency loss. Our results help guide the design of future surveillance programs for invasive species. Addressing program design within a decision-theoretic framework can lead to a better use of available resources. We show how species prevalence, its detectability, and the benefits derived from early detection can be considered.
  • Item
    Thumbnail Image
    A comparison of joint species distribution models for presence-absence data
    Wilkinson, DP ; Golding, N ; Guillera-Arroita, G ; Tingley, R ; McCarthy, MA ; Peres‐Neto, P (WILEY, 2019-02-01)
    1. Joint species distribution models (JSDMs) account for biotic interactions and missing environmental predictors in correlative species distribution models. Several different JSDMs have been proposed in the literature, but the use of different or conflicting nomenclature and statistical notation potentially obscures similarities and differences among them. Furthermore, new JSDM implementations have been illustrated with different case studies, preventing direct comparisons of computational and statistical performance. 2. We aim to resolve these outstanding issues by (a) highlighting similarities among seven presence–absence JSDMs using a clearly defined, singular notation; and (b) evaluating the computational and statistical performance of each JSDM using six datasets that vary widely in numbers of sites, species, and environmental covariates considered. 3. Our singular notation shows that many of the JSDMs are very similar, and in turn parameter estimates of different JSDMs are moderate to strongly, positively correlated. In contrast, the different JSDMs clearly differ in computational efficiency and memory limitations. 4. Our framework will allow ecologists to make educated decisions about the JSDM that best suits their objective, and enable wider uptake of JSDM methods among the ecological community.
  • Item
    Thumbnail Image
    Traits influence detection of exotic plant species in tropical forests
    Junaedi, D ; McCarthy, MA ; Guillera-Arroita, G ; Catford, JA ; Burgman, MA ; Auge, H (PUBLIC LIBRARY SCIENCE, 2018-08-22)
    Detecting exotic plant species is essential for invasive species management. By accounting for factors likely to affect species' detection rates (e.g. survey conditions, observer experience), detectability models can help choose search methods and allocate search effort. Integrating information on species' traits can refine detectability models, and might be particularly valuable if these traits can help improve estimates of detectability where data on particular species are rare. Analysing data collected during line transect distance sampling surveys in Indonesia, we used a multi-species hierarchical distance sampling model to evaluate how plant height, leaf size, leaf shape, and survey location influenced plant species detectability in secondary tropical rainforests. Detectability of the exotic plant species increased with plant height and leaf size. Detectability varied among the different survey locations. We failed to detect a clear effect of leaf shape on detectability. This study indicates that information on traits might improve predictions about exotic species detection, which can then be used to optimise the allocation of search effort for efficient species management. The innovation of the study lies in the multi-species distance sampling model, where the distance-detection function depends on leaf traits and height. The method can be applied elsewhere, including for different traits that may be relevant in other contexts. Trait-based multispecies distance sampling can be a practical approach for sampling exotic shrubs, herbs, or grasses species in the understorey of tropical forests.
  • Item
    Thumbnail Image
    Threatened species impact assessments: survey effort requirements based on criteria for cumulative impacts
    Guillera-Arroita, G ; Lahoz-Monfort, JJ ; McCarthy, MA ; Wintle, BA ; Nally, RM (WILEY, 2015-06)
    Abstract Aim Environmental impact assessments (EIAs) often involve establishing whether a species of concern is present at the site considered for development. When surveys falsely conclude that sites are unoccupied, species prevalence in the region is cumulatively reduced. We argue that setting an acceptable level of induced decline in species occurrence provides a defensible strategy to determine minimum survey effort requirements. We investigate methods for setting such requirements. Location Eastern Australia, although we demonstrate methods applicable wherever species detection data are available to inform survey design. Methods We use probability theory to investigate required survey effort when aiming to limit decline in species occurrence. We use optimization tools to provide a method that, in addition, minimizes overall survey costs. We demonstrate the methods using data for an Australian gliding marsupial. Results A method based on ensuring a constant probability of occupied site misclassification directly links with a prescribed acceptable decline in occurrence. Optimization results indicate that, under particular conditions, a cost‐efficient survey effort allocation can be achieved by setting a constant posterior probability of occupancy at sites where the species is not detected, provided the target level is set in accordance with the acceptable decline in occurrence. Our results provide a critical examination of the approach recently proposed by Wintle et al. (2012) for determining minimum survey effort requirements. Main conclusions EIA survey effort requirements should explicitly link uncertainty in establishing species absence with the broader consequences of failing to detect species presence in places subject to proposed impacts. A direct method, which involves keeping a constant probability of occupied site misclassification, only requires information about species detectability. Alternatively, a method that minimizes overall survey costs can be used. This approach also requires occupancy probability estimates so its performance relies on availability of an informative species distribution model.
  • Item
    No Preview Available
    Is my species distribution model fit for purpose? Matching data and models to applications
    Guillera-Arroita, G ; Lahoz-Monfort, JJ ; Elith, J ; Gordon, A ; Kujala, H ; Lentini, PE ; McCarthy, MA ; Tingley, R ; Wintle, BA (WILEY, 2015-03)
    Abstract Species distribution models (SDMs) are used to inform a range of ecological, biogeographical and conservation applications. However, users often underestimate the strong links between data type, model output and suitability for end‐use. We synthesize current knowledge and provide a simple framework that summarizes how interactions between data type and the sampling process (i.e. imperfect detection and sampling bias) determine the quantity that is estimated by a SDM. We then draw upon the published literature and simulations to illustrate and evaluate the information needs of the most common ecological, biogeographical and conservation applications of SDM outputs. We find that, while predictions of models fitted to the most commonly available observational data (presence records) suffice for some applications, others require estimates of occurrence probabilities, which are unattainable without reliable absence records. Our literature review and simulations reveal that, while converting continuous SDM outputs into categories of assumed presence or absence is common practice, it is seldom clearly justified by the application's objective and it usually degrades inference. Matching SDMs to the needs of particular applications is critical to avoid poor scientific inference and management outcomes. This paper aims to help modellers and users assess whether their intended SDM outputs are indeed fit for purpose.