School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 12
  • Item
    Thumbnail Image
    Efficient effort allocation in line-transect distance sampling of high-density species: When to walk further, measure less-often and gain precision
    Knights, K ; McCarthy, MA ; Camac, J ; Guillera-Arroita, G (WILEY, 2021-06)
    Abstract Line‐transect distance sampling is widely used to estimate population densities using distances of observed targets from transect lines to model detectability. When the target taxa are high density, the frequent measuring of distances may make the method seem impractical. We present a method that improves the efficiency of distance sampling when the target species occurs at high density. Only a proportion of targets are measured to model the detection function, and the time saved on the survey is then used to cover a longer total length of transect and accrue a larger ‘count only’ sample. This approach can improve the precision of the population density estimate when the cost of measuring the distance to a detected target is more than half the cost of walking to the next target. We find the optimal proportion of distances to measure that minimises the variance of the density estimate for a fixed survey budget. We quantify how much this optimised strategy increases the precision of the density estimate compared with conventional line‐transect distance sampling. We then use simulated distance sampling data to test our expressions, and illustrate circumstances under which the optimised approach would be beneficial using distance sampling data on high‐density plants. The simulations indicate that the optimised method delivers benefits in precision, but the magnitude of the benefit is lower than predicted from our expressions, which are based on an asymptotic approximation of the variance. We apply an adjustment to the predicted benefit equation to account for this difference, and show that, in all three plant case studies, the optimised approach could improve the precision gained from a distance sampling survey between 20% and 50%. This new approach could broaden the ecological contexts in which distance sampling is applied, to include estimation of densities of abundant taxa where plots are conventionally used. The method may have interesting applications for other survey types, including multispecies surveys or those using cues or signs that occur at high density.
  • Item
    Thumbnail Image
    Defining and evaluating predictions of joint species distribution models
    Wilkinson, DP ; Golding, N ; Guillera-Arroita, G ; Tingley, R ; McCarthy, MA ; Freckleton, R (WILEY, 2021-03)
    Abstract Joint species distribution models (JSDMs) simultaneously model the distributions of multiple species, while accounting for residual co‐occurrence patterns. Despite increasing adoption of JSDMs in the literature, the question of how to define and evaluate JSDM predictions has only begun to be explored. We define four different JSDM prediction types that correspond to different aspects of species distribution and community assemblage processes. Marginal predictions are environment‐only predictions akin to predictions from single‐species models; joint predictions simultaneously predict entire community assemblages; and conditional marginal and conditional joint predictions are made at the species or assemblage level, conditional on the known occurrence state of one or more species at a site. We define five different classes of metrics that can be used to evaluate these types of predictions: threshold‐dependent, threshold‐independent, community dissimilarity, species richness and likelihood metrics. We illustrate different prediction types and evaluation metrics using a case study in which we fit a JSDM to a frog occurrence dataset collected in Melbourne, Australia. Joint species distribution models present opportunities to investigate the facets of species distribution and community assemblage processes that are not possible to explore with single‐species models. We show that there are a variety of different metrics available to evaluate JSDM predictions, and that choice of prediction type and evaluation metric should closely match the questions being investigated.
  • Item
    Thumbnail Image
    Data Integration for Large-Scale Models of Species Distributions
    Isaac, NJB ; Jarzyna, MA ; Keil, P ; Dambly, LI ; Boersch-Supan, PH ; Browning, E ; Freeman, SN ; Golding, N ; Guillera-Arroita, G ; Henrys, PA ; Jarvis, S ; Lahoz-Monfort, J ; Pagel, J ; Pescott, OL ; Schmucki, R ; Simmonds, EG ; O'Hara, RB (ELSEVIER SCIENCE LONDON, 2020-01)
    With the expansion in the quantity and types of biodiversity data being collected, there is a need to find ways to combine these different sources to provide cohesive summaries of species' potential and realized distributions in space and time. Recently, model-based data integration has emerged as a means to achieve this by combining datasets in ways that retain the strengths of each. We describe a flexible approach to data integration using point process models, which provide a convenient way to translate across ecological currencies. We highlight recent examples of large-scale ecological models based on data integration and outline the conceptual and technical challenges and opportunities that arise.
  • Item
    Thumbnail Image
    Traits explain invasion of alien plants into tropical rainforests
    Junaedi, DI ; Guillera-Arroita, G ; Vesk, PA ; McCarthy, MA ; Burgman, MA ; Catford, JA (WILEY, 2021-05)
    1. The establishment of new botanic gardens in tropical regions highlights a need for weed risk assessment tools suitable for tropical ecosystems. The relevance of plant traits for invasion into tropical rainforests has not been well studied.2. Working in and around four botanic gardens in Indonesia where 590 alien species have been planted, we estimated the effect of four plant traits, plus time since species introduction, on: (a) the naturalization probability and (b) abundance (density) of naturalized species in adjacent native tropical rainforests; and (c) the distance that naturalized alien plants have spread from the botanic gardens.3. We found that specific leaf area (SLA) strongly differentiated 23 naturalized from 78 non-naturalized alien species (randomly selected from 577 non-naturalized species) in our study. These trends may indicate that aliens with high SLA, which had a higher probability of naturalization, benefit from at least two factors when establishing in tropical forests: high growth rates and occupation of forest gaps. Naturalized aliens had high SLA and tended to be short. However, plant height was not significantly related to species' naturalization probability when considered alongside other traits.4. Alien species that were present in the gardens for over 30 years and those with small seeds also had higher probabilities of becoming naturalized, indicating that garden plants can invade the understorey of closed canopy tropical rainforests, especially when invading species are shade tolerant and have sufficient time to establish.5. On average, alien species that were not animal dispersed spread 78 m further into the forests and were more likely to naturalize than animal-dispersed species. We did not detect relationships between the measured traits and estimated density of naturalized aliens in the adjacent forests.6. Synthesis: Traits were able to differentiate alien species from botanic gardens that naturalized in native forest from those that did not; this is promising for developing trait-based risk assessment in the tropics. To limit the risk of invasion and spread into adjacent native forests, we suggest tropical botanic gardens avoid planting alien species with fast carbon capture strategies and those that are shade tolerant.
  • Item
    Thumbnail Image
    Using decision science to evaluate global biodiversity indices
    Watermeyer, KE ; Bal, P ; Burgass, MJ ; Bland, LM ; Collen, B ; Hallam, C ; Kelly, LT ; McCarthy, MA ; Regan, TJ ; Stevenson, S ; Wintle, BA ; Nicholson, E ; Guillera-Arroita, G (WILEY, 2021-04)
    Global biodiversity indices are used to measure environmental change and progress toward conservation goals, yet few indices have been evaluated comprehensively for their capacity to detect trends of interest, such as declines in threatened species or ecosystem function. Using a structured approach based on decision science, we qualitatively evaluated 9 indices commonly used to track biodiversity at global and regional scales against 5 criteria relating to objectives, design, behavior, incorporation of uncertainty, and constraints (e.g., costs and data availability). Evaluation was based on reference literature for indices available at the time of assessment. We identified 4 key gaps in indices assessed: pathways to achieving goals (means objectives) were not always clear or relevant to desired outcomes (fundamental objectives); index testing and understanding of expected behavior was often lacking; uncertainty was seldom acknowledged or accounted for; and costs of implementation were seldom considered. These gaps may render indices inadequate in certain decision-making contexts and are problematic for indices linked with biodiversity targets and sustainability goals. Ensuring that index objectives are clear and their design is underpinned by a model of relevant processes are crucial in addressing the gaps identified by our assessment. Uptake and productive use of indices will be improved if index performance is tested rigorously and assumptions and uncertainties are clearly communicated to end users. This will increase index accuracy and value in tracking biodiversity change and supporting national and global policy decisions, such as the post-2020 global biodiversity framework of the Convention on Biological Diversity.
  • Item
    Thumbnail Image
    Assessing the accuracy of density-independent demographic models for predicting species ranges
    Holden, MH ; Yen, JDL ; Briscoe, NJ ; Lahoz-Monfort, JJ ; Salguero-Gomez, R ; Vesk, PA ; Guillera-Arroita, G (WILEY, 2021-03)
    Accurately predicting species ranges is a primary goal of ecology. Demographic distribution models (DDMs), which correlate underlying vital rates (e.g. survival and reproduction) with environmental conditions, can potentially predict species ranges through time and space. However, tests of DDM accuracy across wide ranges of species' life histories are surprisingly lacking. Using simulations of 1.5 million hypothetical species' range dynamics, we evaluated when DDMs accurately predicted future ranges, to provide clear guidelines for the use of this emerging approach. We limited our study to deterministic demographic models ignoring density dependence, since these models are the most commonly used in the literature. We found that density‐independent DDMs overpredicted extinction if populations were near carrying capacity in the locations where demographic data were available. However, DDMs accurately predicted species ranges if demographic data were limited to sites with mean initial abundance less than one half of carrying capacity. Additionally, the DDMs required demographic data from at least 25 sites, over a short time‐interval (< 10 time‐steps), as populations initially below carrying capacity can saturate in long‐term studies. For species with demographic data from many low density sites, DDMs predicted occurrence more accurately than correlative species distribution models (SDMs) in locations where the species eventually persisted, but not where the species went extinct. These results were insensitive to differences in simulated dispersal, levels of environmental stochasticity, the effects of the environmental variables and the functional forms of density dependence. Our findings suggest that deterministic, density‐independent DDMs are appropriate for applications where locating all possible sites the species might occur in is prioritized over reducing false presence predictions in absent sites. This makes DDMs a promising tool for mapping invasion risk. However, demographic data are often collected at sites where a species is abundant. Density‐independent DDMs are inappropriate in this case.
  • Item
    No Preview Available
    Conservation in the maelstrom of Covid-19-a call to action to solve the challenges, exploit opportunities and prepare for the next pandemic
    Evans, KL ; Ewen, JG ; Guillera-Arroita, G ; Johnson, JA ; Penteriani, V ; Ryan, SJ ; Sollmann, R ; Gordon, IJ (WILEY, 2020-06)
  • Item
    Thumbnail Image
    Influence of life-history traits on the occurrence of carnivores within exotic Eucalyptus plantations
    Teixeira, DF ; Guillera-Arroita, G ; Hilario, RR ; Fonseca, C ; Rosalino, LM ; Santini, L (WILEY, 2020-07-07)
    Aim The world's forested area has been declining, especially in developing countries. In contrast, forest plantations are increasing, particularly exotic Eucalyptus plantations, which cover nowadays over 20 million ha worldwide. This global landscape change affects native communities, especially those at higher trophic levels that are affected by bottom–up cascading effects, such as carnivores. We seek to identify the general life‐history traits of mammalian carnivore species that use exotic Eucalyptus plantations. Location We reviewed 55 studies reporting carnivore presence in Eucalyptus plantations worldwide. Methods We consider seven species life‐history traits (generation length, social behaviour, body mass, energetic trophic level, diet diversity, habitat generalist/specialist and locomotion mode) as candidate drivers. We used generalized linear mixed models, with life‐history traits as fixed factors, and study as well as carnivore species as random factors. We obtained the carnivore occurrence data from the literature (detection of 42 different species, from seven families). We considered non‐detected species those with an IUCN Red List of Threatened Species estimated distribution range overlapping with the study areas, but not recorded by the studies. Results While we found no evidence of an effect of any of the other life‐history traits tested, our modelling procedure indicated that habitat generalist species are more likely to use Eucalyptus forests than specialist species. Main conclusions Our results, therefore, confirm an impoverishment of predator communities in disturbed environments, with the exclusion of the most specialist predators, leading to fragmentation of their populations and, ultimately contributing to their local extinction. The local extinction of specialist carnivores may lead to “functional homogenization” of communities within plantations, modifying ecosystem functioning with a negative impact on plantations’ productivity, profitability and services.
  • Item
    Thumbnail Image
    A standard protocol for reporting species distribution models
    Zurell, D ; Franklin, J ; Koenig, C ; Bouchet, PJ ; Dormann, CF ; Elith, J ; Fandos, G ; Feng, X ; Guillera-Arroita, G ; Guisan, A ; Lahoz-Monfort, JJ ; Leitao, PJ ; Park, DS ; Peterson, AT ; Rapacciuolo, G ; Schmatz, DR ; Schroeder, B ; Serra-Diaz, JM ; Thuiller, W ; Yates, KL ; Zimmermann, NE ; Merow, C (WILEY, 2020-09)
    Species distribution models (SDMs) constitute the most common class of models across ecology, evolution and conservation. The advent of ready‐to‐use software packages and increasing availability of digital geoinformation have considerably assisted the application of SDMs in the past decade, greatly enabling their broader use for informing conservation and management, and for quantifying impacts from global change. However, models must be fit for purpose, with all important aspects of their development and applications properly considered. Despite the widespread use of SDMs, standardisation and documentation of modelling protocols remain limited, which makes it hard to assess whether development steps are appropriate for end use. To address these issues, we propose a standard protocol for reporting SDMs, with an emphasis on describing how a study's objective is achieved through a series of modeling decisions. We call this the ODMAP (Overview, Data, Model, Assessment and Prediction) protocol, as its components reflect the main steps involved in building SDMs and other empirically‐based biodiversity models. The ODMAP protocol serves two main purposes. First, it provides a checklist for authors, detailing key steps for model building and analyses, and thus represents a quick guide and generic workflow for modern SDMs. Second, it introduces a structured format for documenting and communicating the models, ensuring transparency and reproducibility, facilitating peer review and expert evaluation of model quality, as well as meta‐analyses. We detail all elements of ODMAP, and explain how it can be used for different model objectives and applications, and how it complements efforts to store associated metadata and define modelling standards. We illustrate its utility by revisiting nine previously published case studies, and provide an interactive web‐based application to facilitate its use. We plan to advance ODMAP by encouraging its further refinement and adoption by the scientific community.
  • Item
    Thumbnail Image
    Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models
    Hao, T ; Elith, J ; Lahoz-Monfort, JJ ; Guillera-Arroita, G (WILEY, 2020-04)
    Predictive performance is important to many applications of species distribution models (SDMs). The SDM ‘ensemble’ approach, which combines predictions across different modelling methods, is believed to improve predictive performance, and is used in many recent SDM studies. Here, we aim to compare the predictive performance of ensemble species distribution models to that of individual models, using a large presence–absence dataset of eucalypt tree species. To test model performance, we divided our dataset into calibration and evaluation folds using two spatial blocking strategies (checkerboard‐pattern and latitudinal slicing). We calibrated and cross‐validated all models within the calibration folds, using both repeated random division of data (a common approach) and spatial blocking. Ensembles were built using the software package ‘biomod2’, with standard (‘untuned’) settings. Boosted regression tree (BRT) models were also fitted to the same data, tuned according to published procedures. We then used evaluation folds to compare ensembles against both their component untuned individual models, and against the BRTs. We used area under the receiver‐operating characteristic curve (AUC) and log‐likelihood for assessing model performance. In all our tests, ensemble models performed well, but not consistently better than their component untuned individual models or tuned BRTs across all tests. Moreover, choosing untuned individual models with best cross‐validation performance also yielded good external performance, with blocked cross‐validation proving better suited for this choice, in this study, than repeated random cross‐validation. The latitudinal slice test was only possible for four species; this showed some individual models, and particularly the tuned one, performing better than ensembles. This study shows no particular benefit to using ensembles over individual tuned models. It also suggests that further robust testing of performance is required for situations where models are used to predict to distant places or environments.