School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Contrasting patterns of population connectivity between regions in a commercially important mollusc Haliotis rubra: integrating population genetics, genomics and marine LiDAR data
    Miller, AD ; van Rooyen, A ; Rasic, G ; Ierodiaconou, DA ; Gorfine, HK ; Day, R ; Wong, C ; Hoffmann, AA ; Weeks, AR (WILEY, 2016-08)
    Estimating contemporary genetic structure and population connectivity in marine species is challenging, often compromised by genetic markers that lack adequate sensitivity, and unstructured sampling regimes. We show how these limitations can be overcome via the integration of modern genotyping methods and sampling designs guided by LiDAR and SONAR data sets. Here we explore patterns of gene flow and local genetic structure in a commercially harvested abalone species (Haliotis rubra) from southeastern Australia, where the viability of fishing stocks is believed to be dictated by recruitment from local sources. Using a panel of microsatellite and genomewide SNP markers, we compare allele frequencies across a replicated hierarchical sampling area guided by bathymetric LiDAR imagery. Results indicate high levels of gene flow and no significant genetic structure within or between benthic reef habitats across 1400 km of coastline. These findings differ to those reported for other regions of the fishery indicating that larval supply is likely to be spatially variable, with implications for management and long-term recovery from stock depletion. The study highlights the utility of suitably designed genetic markers and spatially informed sampling strategies for gaining insights into recruitment patterns in benthic marine species, assisting in conservation planning and sustainable management of fisheries.
  • Item
    Thumbnail Image
    The queenslandensis and the type Form of the Dengue Fever Mosquito (Aedes aegypti L.) Are Genomically Indistinguishable
    Rasic, G ; Filipovic, I ; Callahan, AG ; Stanford, D ; Chan, A ; Lam-Phua, SG ; Tan, CH ; Hoffmann, AA ; Benedict, MQ (PUBLIC LIBRARY SCIENCE, 2016-11)
    BACKGROUND: The mosquito Aedes aegypti (L.) is a major vector of viral diseases like dengue fever, Zika and chikungunya. Aedes aegypti exhibits high morphological and behavioral variation, some of which is thought to be of epidemiological significance. Globally distributed domestic Ae. aegypti have often been grouped into (i) the very pale variety queenslandensis and (ii) the type form. Because the two color forms co-occur across most of their range, there is interest in understanding how freely they interbreed. This knowledge is particularly important for control strategies that rely on mating compatibilities between the release and target mosquitoes, such as Wolbachia releases and SIT. To address this question, we analyzed nuclear and mitochondrial genome-wide variation in the co-occurring pale and type Ae. aegypti from northern Queensland (Australia) and Singapore. METHODS/FINDINGS: We typed 74 individuals at a 1170 bp-long mitochondrial sequence and at 16,569 nuclear SNPs using a customized double-digest RAD sequencing. 11/29 genotyped individuals from Singapore and 11/45 from Queensland were identified as var. queenslandensis based on the diagnostic scaling patterns. We found 24 different mitochondrial haplotypes, seven of which were shared between the two forms. Multivariate genetic clustering based on nuclear SNPs corresponded to individuals' geographic location, not their color. Several family groups consisted of both forms and three queenslandensis individuals were Wolbachia infected, indicating previous breeding with the type form which has been used to introduce Wolbachia into Ae. aegypti populations. CONCLUSION: Aedes aegypti queenslandensis are genomically indistinguishable from the type form, which points to these forms freely interbreeding at least in Australia and Singapore. Based on our findings, it is unlikely that the presence of very pale Ae. aegypti will affect the success of Aedes control programs based on Wolbachia-infected, sterile or RIDL mosquitoes.
  • Item
    Thumbnail Image
    Mitochondrial DNA variants help monitor the dynamics of Wolbachia invasion into host populations
    Yeap, HL ; Rasic, G ; Endersby-Harshman, NM ; Lee, SF ; Arguni, E ; Le Nguyen, H ; Hoffmann, AA (SPRINGERNATURE, 2016-03)
    Wolbachia is the most widespread endosymbiotic bacterium of insects and other arthropods that can rapidly invade host populations. Deliberate releases of Wolbachia into natural populations of the dengue fever mosquito, Aedes aegypti, are used as a novel biocontrol strategy for dengue suppression. Invasion of Wolbachia through the host population relies on factors such as high fidelity of the endosymbiont transmission and limited immigration of uninfected individuals, but these factors can be difficult to measure. One way of acquiring relevant information is to consider mitochondrial DNA (mtDNA) variation alongside Wolbachia in field-caught mosquitoes. Here we used diagnostic mtDNA markers to differentiate infection-associated mtDNA haplotypes from those of the uninfected mosquitoes at release sites. Unique haplotypes associated with Wolbachia were found at locations outside Australia. We also performed mathematical and qualitative analyses including modelling the expected dynamics of the Wolbachia and mtDNA variants during and after a release. Our analyses identified key features in haplotype frequency patterns to infer the presence of imperfect maternal transmission of Wolbachia, presence of immigration and possibly incomplete cytoplasmic incompatibility. We demonstrate that ongoing screening of the mtDNA variants should provide information on maternal leakage and immigration, particularly in releases outside Australia. As we demonstrate in a case study, our models to track the Wolbachia dynamics can be successfully applied to temporal studies in natural populations or Wolbachia release programs, as long as there is co-occurring mtDNA variation that differentiates infected and uninfected populations.
  • Item
    Thumbnail Image
    Aedes aegypti has spatially structured and seasonally stable populations in Yogyakarta, Indonesia
    Rasic, G ; Endersby-Harshman, N ; Tantowijoyo, W ; Goundar, A ; White, V ; Yang, Q ; Filipovic, I ; Johnson, P ; Hoffmann, AA ; Arguni, E (BMC, 2015-12-01)
    BACKGROUND: Dengue fever, the most prevalent global arboviral disease, represents an important public health problem in Indonesia. Control of dengue relies on the control of its main vector, the mosquito Aedes aegypti, yet nothing is known about the population history and genetic structure of this insect in Indonesia. Our aim was to assess the spatio-temporal population genetic structure of Ae. aegypti in Yogyakarta, a densely populated region on Java with common dengue outbreaks. METHODS: We used multiple marker systems (microsatellites, nuclear and mitochondrial genome-wide single nucleotide polymorphisms generated via Restriction-site Associated DNA sequencing) to analyze 979 Ae. aegypti individuals collected from the Yogyakarta city and the surrounding hamlets during the wet season in 2011 and the following dry season in 2012. We employed individual- and group-based approaches for inferring genetic structure. RESULTS: We found that Ae. aegypti in Yogyakarta has spatially structured and seasonally stable populations. The spatial structuring was significant for the nuclear and mitochondrial markers, while the temporal structuring was non-significant. Nuclear markers identified three main genetic clusters, showing that hamlets have greater genetic isolation from each other and from the inner city sites. However, one hamlet experienced unrestricted mosquito interbreeding with the inner city, forming a single genetic cluster. Genetic distance was poorly correlated with the spatial distance among mosquito samples, suggesting stronger influence of human-assisted gene flow than active mosquito movement on spatial genetic structure. A star-shaped mitochondrial haplotype network and a significant R(2) test statistic (R(2) = 0.0187, P = 0.001) support the hypothesis that Ae. aegypti in Yogyakarta originated from a small or homogeneous source and has undergone a relatively recent demographic expansion. CONCLUSION: We report the first insights into the spatio-temporal genetic structure and the underlying processes in the dengue fever mosquito from Yogyakarta, Indonesia. Our results provide valuable information on the effectiveness of local control measures as well as guidelines for the implementation of novel biocontrol strategies such as release of Wolbachia-infected mosquitoes.
  • Item
    Thumbnail Image
    Wolbachia strains for disease control: ecological and evolutionary considerations
    Hoffmann, AA ; Ross, PA ; Rasic, G (WILEY, 2015-09)
    Wolbachia are endosymbionts found in many insects with the potential to suppress vectorborne diseases, particularly through interfering with pathogen transmission. Wolbachia strains are highly variable in their effects on hosts, raising the issue of which attributes should be selected to ensure that the best strains are developed for disease control. This depends on their ability to suppress viral transmission, invade host populations, persist without loss of viral suppression and not interfere with other control strategies. The potential to achieve these objectives is likely to involve evolutionary constraints; viral suppression may be limited by the ability of infections to spread due to deleterious host fitness effects. However, there are exceptions to these patterns in both natural infections and in novel associations generated following interspecific transfer, suggesting that pathogen blockage, deleterious fitness effects and changes to reproductive biology might be at least partly decoupled to achieve ideal infection attributes. The stability of introduced Wolbachia and its effects on viral transmission remain unclear, but rapid evolutionary changes seem unlikely. Although deliberate transfers of Wolbachia across species remain particularly challenging, the availability of strains with desirable attributes should be expanded, taking advantage of the diversity available across thousands of strains in natural populations.
  • Item
    Thumbnail Image
    Contrasting genetic structure between mitochondrial and nuclear markers in the dengue fever mosquito from Rio de Janeiro: implications for vector control
    Rasic, G ; Schama, R ; Powell, R ; Maciel-de Freitas, R ; Endersby-Harshman, NM ; Filipovic, I ; Sylvestre, G ; Maspero, RC ; Hoffmann, AA (WILEY, 2015-10)
    Dengue is the most prevalent global arboviral disease that affects over 300 million people every year. Brazil has the highest number of dengue cases in the world, with the most severe epidemics in the city of Rio de Janeiro (Rio). The effective control of dengue is critically dependent on the knowledge of population genetic structuring in the primary dengue vector, the mosquito Aedes aegypti. We analyzed mitochondrial and nuclear genomewide single nucleotide polymorphism markers generated via Restriction-site Associated DNA sequencing, as well as traditional microsatellite markers in Ae. aegypti from Rio. We found four divergent mitochondrial lineages and a strong spatial structuring of mitochondrial variation, in contrast to the overall nuclear homogeneity across Rio. Despite a low overall differentiation in the nuclear genome, we detected strong spatial structure for variation in over 20 genes that have a significantly altered expression in response to insecticides, xenobiotics, and pathogens, including the novel biocontrol agent Wolbachia. Our results indicate that high genetic diversity, spatially unconstrained admixing likely mediated by male dispersal, along with locally heterogeneous genetic variation that could affect insecticide resistance and mosquito vectorial capacity, set limits to the effectiveness of measures to control dengue fever in Rio.