School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Tracking genetic invasions: Genome-wide single nucleotide polymorphisms reveal the source of pyrethroid-resistant Aedes aegypti (yellow fever mosquito) incursions at international ports
    Schmidt, TL ; van Rooyen, AR ; Chung, J ; Endersby-Harshman, NM ; Griffin, PC ; Sly, A ; Hoffmann, AA ; Weeks, AR (WILEY, 2019-06)
    Biological invasions are increasing globally in number and extent despite efforts to restrict their spread. Knowledge of incursion pathways is necessary to prevent new invasions and to design effective biosecurity protocols at source and recipient locations. This study uses genome-wide single nucleotide polymorphisms (SNPs) to determine the origin of 115 incursive Aedes aegypti(yellow fever mosquito) detected at international ports in Australia and New Zealand. We also genotyped mosquitoes at three point mutations in the voltage-sensitive sodium channel (Vssc) gene: V1016G, F1534C and S989P. These mutations confer knockdown resistance to synthetic pyrethroid insecticides, widely used for controlling invertebrate pests. We first delineated reference populations using Ae. aegypti sampled from 15 locations in Asia, South America, Australia and the Pacific Islands. Incursives were assigned to these populations using discriminant analysis of principal components (DAPC) and an assignment test with a support vector machine predictive model. Bali, Indonesia, was the most common origin of Ae. aegypti detected in Australia, while Ae. aegypti detected in New Zealand originated from Pacific Islands such as Fiji. Most incursives had the same allelic genotype across the three Vsscgene point mutations, which confers strong resistance to synthetic pyrethroids, the only insecticide class used in current, widely implemented aircraft disinsection protocols endorsed by the World Health Organization (WHO). Additionally, all internationally assigned Ae. aegypti had Vssc point mutations linked to pyrethroid resistance that are not found in Australian populations. These findings demonstrate that protocols for preventing introductions of invertebrates must consider insecticide resistance, and highlight the usefulness of genomic data sets for managing global biosecurity objectives.
  • Item
    Thumbnail Image
    A genomic approach to inferring kinship reveals limited intergenerational dispersal in the yellow fever mosquito
    Jasper, M ; Schmidt, TL ; Ahmad, NW ; Sinkins, SP ; Hoffmann, AA (WILEY, 2019-09)
    Understanding past dispersal and breeding events can provide insight into ecology and evolution and can help inform strategies for conservation and the control of pest species. However, parent-offspring dispersal can be difficult to investigate in rare species and in small pest species such as mosquitoes. Here, we develop a methodology for estimating parent-offspring dispersal from the spatial distribution of close kin, using pairwise kinship estimates derived from genome-wide single nucleotide polymorphisms (SNPs). SNPs were scored in 162 Aedes aegypti (yellow fever mosquito) collected from eight close-set, high-rise apartment buildings in an area of Malaysia with high dengue incidence. We used the SNPs to reconstruct kinship groups across three orders of kinship. We transformed the geographical distances between all kin pairs within each kinship category into axial standard deviations of these distances, then decomposed these into components representing past dispersal events. From these components, we isolated the axial standard deviation of parent-offspring dispersal and estimated neighbourhood area (129 m), median parent-offspring dispersal distance (75 m) and oviposition dispersal radius within a gonotrophic cycle (36 m). We also analysed genetic structure using distance-based redundancy analysis and linear regression, finding isolation by distance both within and between buildings and estimating neighbourhood size at 268 individuals. These findings indicate the scale required to suppress local outbreaks of arboviral disease and to target releases of modified mosquitoes for mosquito and disease control. Our methodology is readily implementable for studies of other species, including pests and species of conservation significance.
  • Item
    Thumbnail Image
    Genome-wide SNPs reveal the drivers of gene flow in an urban population of the Asian Tiger Mosquito, Aedes albopictus
    Schmidt, TL ; Rasic, G ; Zhang, D ; Zheng, X ; Xi, Z ; Hoffmann, AA ; Lenhart, A (PUBLIC LIBRARY SCIENCE, 2017-10)
    Aedes albopictus is a highly invasive disease vector with an expanding worldwide distribution. Genetic assays using low to medium resolution markers have found little evidence of spatial genetic structure even at broad geographic scales, suggesting frequent passive movement along human transportation networks. Here we analysed genetic structure of Aedes albopictus collected from 12 sample sites in Guangzhou, China, using thousands of genome-wide single nucleotide polymorphisms (SNPs). We found evidence for passive gene flow, with distance from shipping terminals being the strongest predictor of genetic distance among mosquitoes. As further evidence of passive dispersal, we found multiple pairs of full-siblings distributed between two sample sites 3.7 km apart. After accounting for geographical variability, we also found evidence for isolation by distance, previously undetectable in Ae. albopictus. These findings demonstrate how large SNP datasets and spatially-explicit hypothesis testing can be used to decipher processes at finer geographic scales than formerly possible. Our approach can be used to help predict new invasion pathways of Ae. albopictus and to refine strategies for vector control that involve the transformation or suppression of mosquito populations.
  • Item
    Thumbnail Image
    Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti
    Schmidt, TL ; Barton, NH ; Rasic, G ; Turley, AP ; Montgomery, BL ; Iturbe-Ormaetxe, I ; Cook, PE ; Ryan, PA ; Ritchie, SA ; Hoffmann, AA ; O'Neill, SL ; Turelli, M ; Read, A (PUBLIC LIBRARY SCIENCE, 2017-05-01)
    Dengue-suppressing Wolbachia strains are promising tools for arbovirus control, particularly as they have the potential to self-spread following local introductions. To test this, we followed the frequency of the transinfected Wolbachia strain wMel through Ae. aegypti in Cairns, Australia, following releases at 3 nonisolated locations within the city in early 2013. Spatial spread was analysed graphically using interpolation and by fitting a statistical model describing the position and width of the wave. For the larger 2 of the 3 releases (covering 0.97 km2 and 0.52 km2), we observed slow but steady spatial spread, at about 100–200 m per year, roughly consistent with theoretical predictions. In contrast, the smallest release (0.11 km2) produced erratic temporal and spatial dynamics, with little evidence of spread after 2 years. This is consistent with the prediction concerning fitness-decreasing Wolbachia transinfections that a minimum release area is needed to achieve stable local establishment and spread in continuous habitats. Our graphical and likelihood analyses produced broadly consistent estimates of wave speed and wave width. Spread at all sites was spatially heterogeneous, suggesting that environmental heterogeneity will affect large-scale Wolbachia transformations of urban mosquito populations. The persistence and spread of Wolbachia in release areas meeting minimum area requirements indicates the promise of successful large-scale population transformation.