School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    The mammary gland-specific marsupial ELP and eutherian CTI share a common ancestral gene
    Pharo, EA ; De Leo, AA ; Renfree, MB ; Thomson, PC ; Lefevre, CM ; Nicholas, KR (BMC, 2012-06-08)
    BACKGROUND: The marsupial early lactation protein (ELP) gene is expressed in the mammary gland and the protein is secreted into milk during early lactation (Phase 2A). Mature ELP shares approximately 55.4% similarity with the colostrum-specific bovine colostrum trypsin inhibitor (CTI) protein. Although ELP and CTI both have a single bovine pancreatic trypsin inhibitor (BPTI)-Kunitz domain and are secreted only during the early lactation phases, their evolutionary history is yet to be investigated. RESULTS: Tammar ELP was isolated from a genomic library and the fat-tailed dunnart and Southern koala ELP genes cloned from genomic DNA. The tammar ELP gene was expressed only in the mammary gland during late pregnancy (Phase 1) and early lactation (Phase 2A). The opossum and fat-tailed dunnart ELP and cow CTI transcripts were cloned from RNA isolated from the mammary gland and dog CTI from cells in colostrum. The putative mature ELP and CTI peptides shared 44.6%-62.2% similarity. In silico analyses identified the ELP and CTI genes in the other species examined and provided compelling evidence that they evolved from a common ancestral gene. In addition, whilst the eutherian CTI gene was conserved in the Laurasiatherian orders Carnivora and Cetartiodactyla, it had become a pseudogene in others. These data suggest that bovine CTI may be the ancestral gene of the Artiodactyla-specific, rapidly evolving chromosome 13 pancreatic trypsin inhibitor (PTI), spleen trypsin inhibitor (STI) and the five placenta-specific trophoblast Kunitz domain protein (TKDP1-5) genes. CONCLUSIONS: Marsupial ELP and eutherian CTI evolved from an ancestral therian mammal gene before the divergence of marsupials and eutherians between 130 and 160 million years ago. The retention of the ELP gene in marsupials suggests that this early lactation-specific milk protein may have an important role in the immunologically naïve young of these species.
  • Item
    Thumbnail Image
    Lactation transcriptomics in the Australian marsupial, Macropus eugenii:: transcript sequencing and quantification
    Lefevre, CM ; Digby, MR ; Whitley, JC ; Strahm, Y ; Nicholas, KR (BMC, 2007-11-13)
    BACKGROUND: Lactation is an important aspect of mammalian biology and, amongst mammals, marsupials show one of the most complex lactation cycles. Marsupials, such as the tammar wallaby (Macropus eugenii) give birth to a relatively immature newborn and progressive changes in milk composition and milk production regulate early stage development of the young. RESULTS: In order to investigate gene expression in the marsupial mammary gland during lactation, a comprehensive set of cDNA libraries was derived from lactating tissues throughout the lactation cycle of the tammar wallaby. A total of 14,837 express sequence tags were produced by cDNA sequencing. Sequence analysis and sequence assembly were used to construct a comprehensive catalogue of mammary transcripts. Sequence data from pregnant and early or late lactating specific cDNA libraries and, data from early or late lactation massively parallel sequencing strategies were combined to analyse the variation of milk protein gene expression during the lactation cycle. CONCLUSION: Results show a steady increase in expression of genes coding for secreted protein during the lactation cycle that is associated with high proportion of transcripts coding for milk proteins. In addition, genes involved in immune function, translation and energy or anabolic metabolism are expressed across the lactation cycle. A number of potential new milk proteins or mammary gland remodelling markers, including noncoding RNAs have been identified.
  • Item
    Thumbnail Image
    The tammar wallaby: A marsupial model to examine the timed delivery and role of bioactives in milk
    Sharp, JA ; Wanyonyi, S ; Modepalli, V ; Watt, A ; Kuruppath, S ; Hinds, LA ; Kumar, A ; Abud, HE ; Lefevre, C ; Nicholas, KR (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2017-04-01)
    It is now clear that milk has multiple functions; it provides the most appropriate nutrition for growth of the newborn, it delivers a range of bioactives with the potential to stimulate development of the young, it has the capacity to remodel the mammary gland (stimulate growth or signal cell death) and finally milk can provide protection from infection and inflammation when the mammary gland is susceptible to these challenges. There is increasing evidence to support studies using an Australian marsupial, the tammar wallaby (Macropus eugenii), as an interesting and unique model to study milk bioactives. Reproduction in the tammar wallaby is characterized by a short gestation, birth of immature young and a long lactation. All the major milk constituents change substantially and progressively during lactation and these changes have been shown to regulate growth and development of the tammar pouch young and to have roles in mammary gland biology. This review will focus on recent reports examining the control of lactation in the tammar wallaby and the timed delivery of milk bioactivity.
  • Item
    Thumbnail Image
    Transcriptome analysis of mammary epithelial cell gene expression reveals novel roles of the extracellular matrix.
    Wanyonyi, SS ; Kumar, A ; Du Preez, R ; Lefevre, C ; Nicholas, KR (Elsevier BV, 2017-12)
    BACKGROUND: The unique lactation strategy of the tammar wallaby (Macropus eugeni) has been invaluable in evaluating the role of lactogenic hormones and the extracellular matrix (ECM) in the local control of mammary gland function. However molecular pathways through which hormones and ECM exert their effect on wallaby mammary gland function remain unclear. This study undertakes transcriptome analysis of wallaby mammary epithelial cells (WallMEC) following treatment with mammary ECM from two distinct stages of lactation. METHODS: WallMEC from MID lactation mammary glands were cultured on ECM from MID or LATE lactation and treated for 5 days with 1 μg/ml cortisol, 1 μg/ml insulin, 0.2 µg/ml prolactin, 650 pg/ml triodothyronine and 1 pg/ml estradiol to induce lactation. WallMEC RNA from triplicate ECM treatments was used to perform RNAseq. RESULTS: ECM from MID and LATE lactation differentially regulated key genes in sugar and lipid metabolism. Seven pathways including galactose metabolism, lysosome, cell adhesion molecules (CAM), p53 signaling, the complement and coagulation and Nod-like receptor signaling pathways were only significantly responsive to ECM in the presence of hormones. The raw RNA-seq data for this project are available on the NCBI Gene Expression Omnibus (GEO) browser (accession number GSE81210). CONCLUSIONS: A potential role of ECM in regulation of the caloric content of milk, among other functions including apoptosis, cell proliferation and differentiation has been identified. GENERAL SIGNIFICANCE: This study has used a non-eutherian lactation model to demonstrate the synergy between ECM and hormones in the local regulation of mammary function.
  • Item
    Thumbnail Image
    Gene expression profiling of postnatal lung development in the marsupial gray short-tailed opossum (Monodelphis domestica) highlights conserved developmental pathways and specific characteristics during lung organogenesis
    Modepalli, V ; Kumar, A ; Sharp, JA ; Saunders, NR ; Nicholas, KR ; Lefevre, C (BMC, 2018-10-05)
    BACKGROUND: After a short gestation, marsupials give birth to immature neonates with lungs that are not fully developed and in early life the neonate partially relies on gas exchange through the skin. Therefore, significant lung development occurs after birth in marsupials in contrast to eutherian mammals such as humans and mice where lung development occurs predominantly in the embryo. To explore the mechanisms of marsupial lung development in comparison to eutherians, morphological and gene expression analysis were conducted in the gray short-tailed opossum (Monodelphis domestica). RESULTS: Postnatal lung development of Monodelphis involves three key stages of development: (i) transition from late canalicular to early saccular stages, (ii) saccular and (iii) alveolar stages, similar to developmental stages overlapping the embryonic and perinatal period in eutherians. Differentially expressed genes were identified and correlated with developmental stages. Functional categories included growth factors, extracellular matrix protein (ECMs), transcriptional factors and signalling pathways related to branching morphogenesis, alveologenesis and vascularisation. Comparison with published data on mice highlighted the conserved importance of extracellular matrix remodelling and signalling pathways such as Wnt, Notch, IGF, TGFβ, retinoic acid and angiopoietin. The comparison also revealed changes in the mammalian gene expression program associated with the initiation of alveologenesis and birth, pointing to subtle differences between the non-functional embryonic lung of the eutherian mouse and the partially functional developing lung of the marsupial Monodelphis neonates. The data also highlighted a subset of contractile proteins specifically expressed in Monodelphis during and after alveologenesis. CONCLUSION: The results provide insights into marsupial lung development and support the potential of the marsupial model of postnatal development towards better understanding of the evolution of the mammalian bronchioalveolar lung.
  • Item
    Thumbnail Image
    Reconstruction of protein-protein interaction pathways by mining subject-verb-objects intermediates
    Ling, MHT ; Lefevre, C ; Nicholas, KR ; Lin, F ; Rajapakse, JC ; Schmidt, B ; Volkert, G (SPRINGER-VERLAG BERLIN, 2007)