School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    Proteome metabolome and transcriptome data for three Symbiodiniaceae under ambient and heat stress conditions
    Camp, EF ; Kahlke, T ; Signal, B ; Oakley, CA ; Lutz, A ; Davy, SK ; Suggett, DJ ; Leggat, WP (NATURE PORTFOLIO, 2022-04-05)
    The Symbiodiniaceae are a taxonomically and functionally diverse family of marine dinoflagellates. Their symbiotic relationship with invertebrates such as scleractinian corals has made them the focus of decades of research to resolve the underlying biology regulating their sensitivity to stressors, particularly thermal stress. Research to-date suggests that Symbiodiniaceae stress sensitivity is governed by a complex interplay between phylogenetic dependent and independent traits (diversity of characteristics of a species). Consequently, there is a need for datasets that simultaneously broadly resolve molecular and physiological processes under stressed and non-stressed conditions. Therefore, we provide a dataset simultaneously generating transcriptome, metabolome, and proteome data for three ecologically important Symbiodiniaceae isolates under nutrient replete growth conditions and two temperature treatments (ca. 26 °C and 32 °C). Elevated sea surface temperature is primarily responsible for coral bleaching events that occur when the coral-Symbiodiniaceae relationship has been disrupted. Symbiodiniaceae can strongly influence their host's response to thermal stress and consequently it is necessary to resolve drivers of Symbiodiniaceae heat stress tolerance. We anticipate these datasets to expand our understanding on the key genotypic and functional properties that influence the sensitivities of Symbiodiniaceae to thermal stress.
  • Item
    Thumbnail Image
    Mapping carbon fate during bleaching in a model cnidarian symbiosis: the application of 13C metabolomics
    Hillyer, KE ; Dias, DA ; Lutz, A ; Roessner, U ; Davy, SK (WILEY, 2017-06)
    Coral bleaching is a major threat to the persistence of coral reefs. Yet we lack detailed knowledge of the metabolic interactions that determine symbiosis function and bleaching-induced change. We mapped autotrophic carbon fate within the free metabolite pools of both partners of a model cnidarian-dinoflagellate symbiosis (Aiptasia-Symbiodinium) during exposure to thermal stress via the stable isotope tracer (13 C bicarbonate), coupled to GC-MS. Symbiont photodamage and pronounced bleaching coincided with substantial increases in the turnover of non13 C-labelled pools in the dinoflagellate (lipid and starch store catabolism). However, 13 C enrichment of multiple compounds associated with ongoing carbon fixation and de novo biosynthesis pathways was maintained (glucose, fatty acid and lipogenesis intermediates). Minimal change was also observed in host pools of 13 C-enriched glucose (a major symbiont-derived mobile product). However, host pathways downstream showed altered carbon fate and/or pool composition, with accumulation of compatible solutes and nonenzymic antioxidant precursors. In hospite symbionts continue to provide mobile products to the host, but at a significant cost to themselves, necessitating the mobilization of energy stores. These data highlight the need to further elucidate the role of metabolic interactions between symbiotic partners, during the process of thermal acclimation and coral bleaching.
  • Item
    Thumbnail Image
    Genetic markers for antioxidant capacity in a reef-building coral
    Jin, YK ; Lundgren, P ; Lutz, A ; Raina, J-B ; Howells, EJ ; Paley, AS ; Willis, BL ; van Oppen, MJH (AMER ASSOC ADVANCEMENT SCIENCE, 2016-05)
    The current lack of understanding of the genetic basis underlying environmental stress tolerance in reef-building corals impairs the development of new management approaches to confronting the global demise of coral reefs. On the Great Barrier Reef (GBR), an approximately 51% decline in coral cover occurred over the period 1985-2012. We conducted a gene-by-environment association analysis across 12° latitude on the GBR, as well as both in situ and laboratory genotype-by-phenotype association analyses. These analyses allowed us to identify alleles at two genetic loci that account for differences in environmental stress tolerance and antioxidant capacity in the common coral Acropora millepora. The effect size for antioxidant capacity was considerable and biologically relevant (32.5 and 14.6% for the two loci). Antioxidant capacity is a critical component of stress tolerance because a multitude of environmental stressors cause increased cellular levels of reactive oxygen species. Our findings provide the first step toward the development of novel coral reef management approaches, such as spatial mapping of stress tolerance for use in marine protected area design, identification of stress-tolerant colonies for assisted migration, and marker-assisted selective breeding to create more tolerant genotypes for restoration of denuded reefs.
  • Item
    Thumbnail Image
    A Quantitative Profiling Method of Phytohormones and Other Metabolites Applied to Barley Roots Subjected to Salinity Stress
    Cao, D ; Lutz, A ; Hill, CB ; Callahan, DL ; Roessner, U (Frontiers Media, 2017-01-10)
    As integral parts of plant signaling networks, phytohormones are involved in the regulation of plant metabolism and growth under adverse environmental conditions, including salinity. Globally, salinity is one of the most severe abiotic stressors with an estimated 800 million hectares of arable land affected. Roots are the first plant organ to sense salinity in the soil, and are the initial site of sodium (Na+) exposure. However, the quantification of phytohormones in roots is challenging, as they are often present at extremely low levels compared to other plant tissues. To overcome this challenge, we developed a high-throughput LC-MS method to quantify ten endogenous phytohormones and their metabolites of diverse chemical classes in roots of barley. This method was validated in a salinity stress experiment with six barley varieties grown hydroponically with and without salinity. In addition to phytohormones, we quantified 52 polar primary metabolites, including some phytohormone precursors, using established GC-MS and LC-MS methods. Phytohormone and metabolite data were correlated with physiological measurements including biomass, plant size and chlorophyll content. Root and leaf elemental analysis was performed to determine Na+ exclusion and K+ retention ability in the studied barley varieties. We identified distinct phytohormone and metabolite signatures as a response to salinity stress in different barley varieties. Abscisic acid increased in the roots of all varieties under salinity stress, and elevated root salicylic acid levels were associated with an increase in leaf chlorophyll content. Furthermore, the landrace Sahara maintained better growth, had lower Na+ levels and maintained high levels of the salinity stress linked metabolite putrescine as well as the phytohormone metabolite cinnamic acid, which has been shown to increase putrescine concentrations in previous studies. This study highlights the importance of root phytohormones under salinity stress and the multi-variety analysis provides an important update to analytical methodology, and adds to the current knowledge of salinity stress responses in plants at the molecular level.
  • Item
    Thumbnail Image
    Environmental gradients predict the ratio of environmentally acquired carotenoids to self-synthesised pteridine pigments
    Stuart-Fox, D ; Rankin, KJ ; Lutz, A ; Elliott, A ; Hugall, AF ; McLean, CA ; Medina, I ; Grether, G (WILEY, 2021-10)
    Carotenoids are important pigments producing integument colouration; however, their dietary availability may be limited in some environments. Many species produce yellow to red hues using a combination of carotenoids and self-synthesised pteridine pigments. A compelling hypothesis is that pteridines replace carotenoids in environments where carotenoid availability is limited. To test this hypothesis, we quantified concentrations of five carotenoid and six pteridine pigments in multiple skin colours and individuals from 27 species of agamid lizards. We show that environmental gradients predict the ratio of carotenoids to pteridines; carotenoid concentrations are lower and pteridine concentrations higher in arid environments with low vegetation productivity. Both carotenoid and pteridine pigments were present in all species, but only pteridine concentrations explained colour variation among species and there were no correlations between carotenoid and pteridine pigments with a similar hue. These results suggest that in arid environments, where carotenoids are likely limited, species may compensate by synthesising more pteridines but do not necessarily replace carotenoids with pteridines of similar hue.
  • Item
    Thumbnail Image
    Diurnal Changes in Transcript and Metabolite Levels during the Iron Deficiency Response of Rice
    Selby-Pham, J ; Lutz, A ; Moreno-Moyano, LT ; Boughton, BA ; Roessner, U ; Johnson, AAT (SpringerOpen, 2017-04-20)
    Background Rice (Oryza sativa L.) is highly susceptible to iron (Fe) deficiency due to low secretion levels of the mugineic acid (MA) family phytosiderophore (PS) 2′-deoxymugineic acid (DMA) into the rhizosphere. The low levels of DMA secreted by rice have proved challenging to measure and, therefore, the pattern of DMA secretion under Fe deficiency has been less extensively studied relative to other graminaceous monocot species that secrete high levels of PS, such as barley (Hordeum vulgare L.). Results Gene expression and metabolite analyses were used to characterise diurnal changes occurring during the Fe deficiency response of rice. Iron deficiency inducible genes involved in root DMA biosynthesis and secretion followed a diurnal pattern with peak induction occurring 3–5 h after the onset of light; a result consistent with that of other Strategy II plant species such as barley and wheat. Furthermore, triple quadrupole mass spectrometry identified 3–5 h after the onset of light as peak time of DMA secretion from Fe-deficient rice roots. Metabolite profiling identified accumulation of amines associated with metal chelation, metal translocation and plant oxidative stress responses occurring with peak induction 10–12 h after the onset of light. Conclusion The results of this study confirmed that rice shares a similar peak time of Fe deficiency associated induction of DMA secretion compared to other Strategy II plant species but has less prominent daily fluctuations of DMA secretion. It also revealed metabolic changes associated with the remediation of Fe deficiency and mitigation of damage from resulting stress in rice roots. This study complements previous studies on the genetic changes in response to Fe deficiency in rice and constitutes an important advance towards our understanding of the molecular mechanisms underlying the rice Fe deficiency response.
  • Item
    Thumbnail Image
    Genetic Traces of Recent Long-Distance Dispersal in a Predominantly Self-Recruiting Coral
    van Oppen, MJH ; Lutz, A ; De'ath, G ; Peplow, L ; Kininmonth, S ; Rands, S (PUBLIC LIBRARY SCIENCE, 2008-10-14)
    BACKGROUND: Understanding of the magnitude and direction of the exchange of individuals among geographically separated subpopulations that comprise a metapopulation (connectivity) can lead to an improved ability to forecast how fast coral reef organisms are likely to recover from disturbance events that cause extensive mortality. Reef corals that brood their larvae internally and release mature larvae are believed to show little exchange of larvae over ecological times scales and are therefore expected to recover extremely slowly from large-scale perturbations. METHODOLOGY/PRINCIPAL FINDINGS: Using analysis of ten DNA microsatellite loci, we show that although Great Barrier Reef (GBR) populations of the brooding coral, Seriatopora hystrix, are mostly self-seeded and some populations are highly isolated, a considerable amount of sexual larvae (up to approximately 4%) has been exchanged among several reefs 10 s to 100 s km apart over the past few generations. Our results further indicate that S. hystrix is capable of producing asexual propagules with similar long-distance dispersal abilities (approximately 1.4% of the sampled colonies had a multilocus genotype that also occurred at another sampling location), which may aid in recovery from environmental disturbances. CONCLUSIONS/SIGNIFICANCE: Patterns of connectivity in this and probably other GBR corals are complex and need to be resolved in greater detail through genetic characterisation of different cohorts and linkage of genetic data with fine-scale hydrodynamic models.
  • Item
    Thumbnail Image
    Host Coenzyme Q Redox State Is an Early Biomarker of Thermal Stress in the Coral Acropora millepora
    Lutz, A ; Raina, J-B ; Motti, CA ; Miller, DJ ; van Oppen, MJH ; Medina, M (PUBLIC LIBRARY SCIENCE, 2015-10-01)
    Bleaching episodes caused by increasing seawater temperatures may induce mass coral mortality and are regarded as one of the biggest threats to coral reef ecosystems worldwide. The current consensus is that this phenomenon results from enhanced production of harmful reactive oxygen species (ROS) that disrupt the symbiosis between corals and their endosymbiotic dinoflagellates, Symbiodinium. Here, the responses of two important antioxidant defence components, the host coenzyme Q (CoQ) and symbiont plastoquinone (PQ) pools, are investigated for the first time in colonies of the scleractinian coral, Acropora millepora, during experimentally-induced bleaching under ecologically relevant conditions. Liquid chromatography-mass spectrometry (LC-MS) was used to quantify the states of these two pools, together with physiological parameters assessing the general state of the symbiosis (including photosystem II photochemical efficiency, chlorophyll concentration and Symbiodinium cell densities). The results show that the responses of the two antioxidant systems occur on different timescales: (i) the redox state of the Symbiodinium PQ pool remained stable until twelve days into the experiment, after which there was an abrupt oxidative shift; (ii) by contrast, an oxidative shift of approximately 10% had occurred in the host CoQ pool after 6 days of thermal stress, prior to significant changes in any other physiological parameter measured. Host CoQ pool oxidation is thus an early biomarker of thermal stress in corals, and this antioxidant pool is likely to play a key role in quenching thermally-induced ROS in the coral-algal symbiosis. This study adds to a growing body of work that indicates host cellular responses may precede the bleaching process and symbiont dysfunction.