School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Plant Growth Promotion and Heat Stress Amelioration in Arabidopsis Inoculated with Paraburkholderia phytofirmans PsJN Rhizobacteria Quantified with the GrowScreen-Agar II Phenotyping Platform
    Macabuhay, A ; Arsova, B ; Watt, M ; Nagel, KA ; Lenz, H ; Putz, A ; Adels, S ; Mueller-Linow, M ; Kelm, J ; Johnson, AAT ; Walker, R ; Schaaf, G ; Roessner, U (MDPI, 2022-11)
    High temperatures inhibit plant growth. A proposed strategy for improving plant productivity under elevated temperatures is the use of plant growth-promoting rhizobacteria (PGPR). While the effects of PGPR on plant shoots have been extensively explored, roots-particularly their spatial and temporal dynamics-have been hard to study, due to their below-ground nature. Here, we characterized the time- and tissue-specific morphological changes in bacterized plants using a novel non-invasive high-resolution plant phenotyping and imaging platform-GrowScreen-Agar II. The platform uses custom-made agar plates, which allow air exchange to occur with the agar medium and enable the shoot to grow outside the compartment. The platform provides light protection to the roots, the exposure of it to the shoots, and the non-invasive phenotyping of both organs. Arabidopsis thaliana, co-cultivated with Paraburkholderia phytofirmans PsJN at elevated and ambient temperatures, showed increased lengths, growth rates, and numbers of roots. However, the magnitude and direction of the growth promotion varied depending on root type, timing, and temperature. The root length and distribution per depth and according to time was also influenced by bacterization and the temperature. The shoot biomass increased at the later stages under ambient temperature in the bacterized plants. The study offers insights into the timing of the tissue-specific, PsJN-induced morphological changes and should facilitate future molecular and biochemical studies on plant-microbe-environment interactions.
  • Item
    Thumbnail Image
    Modulators or facilitators? Roles of lipids in plant root-microbe interactions
    Macabuhay, A ; Arsova, B ; Walker, R ; Johnson, A ; Watt, M ; Roessner, U (CELL PRESS, 2022-02)
    Lipids have diverse functions in regulating the plasma membrane's cellular processes and signaling mediation. Plasma membrane lipids are also involved in the plant's complex interactions with the surrounding microorganisms, with which plants are in various forms of symbiosis. The roles of lipids influence the whole microbial colonization process, thus shaping the rhizomicrobiome. As chemical signals, lipids facilitate the stages of rhizospheric interactions - from plant root to microbe, microbe to microbe, and microbe to plant root - and modulate the plant's defense responses upon perception or contact with either beneficial or phytopathogenic microorganisms. Although studies have come a long way, further investigation is needed to discover more lipid species and elucidate novel lipid functions and profiles under various stages of plant root-microbe interactions.