School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    No Preview Available
    Mergers and acquisitions: Malaria and the great chloroplast heist
    McFadden, GI (Springer Nature, 2000-12-01)
  • Item
    Thumbnail Image
    Skeletons in the closet: How do chloroplasts stay in shape?
    McFadden, GI (ROCKEFELLER UNIV PRESS, 2000-11-13)
  • Item
    Thumbnail Image
    BASAL BODY REORIENTATION MEDIATED BY A CA-2+-MODULATED CONTRACTILE PROTEIN
    MCFADDEN, GI ; SCHULZE, D ; SUREK, B ; SALISBURY, JL ; MELKONIAN, M (ROCKEFELLER UNIV PRESS, 1987-08)
    A rapid, Ca2+-dependent change in the angle between basal bodies (up to 180 degrees) is associated with light-induced reversal of swimming direction (the "photophobic" response) in a number of flagellated green algae. In isolated, detergent-extracted, reactivated flagellar apparatus complexes of Spermatozopsis similis, axonemal beat form conversion to the symmetrical/undulating flagellar pattern and basal body reorientation (from the antiparallel to the parallel configuration) are simultaneously induced at greater than or equal to 10(-7) M Ca2+. Basal body reorientation, however, is independent of flagellar beating since it is induced at greater than or equal to 10(-7) M Ca2+ when flagellar beating is inhibited (i.e., in the presence of 1 microM orthovanadate in reactivation solutions; in the absence of ATP or dithiothreitol in isolation and reactivation solutions), or when axonemes are mechanically removed from flagellar apparatuses. Although frequent axonemal beat form reversals were induced by varying the Ca2+ concentration, antiparallel basal body configuration could not be restored in isolated flagellar apparatuses. Observations of the photophobic response in vivo indicate that even though the flagella resume the asymmetric, breaststroke beat form 1-2 s after photostimulation, antiparallel basal body configuration is not restored until a few minutes later. Using an antibody generated against the 20-kD Ca2+-modulated contractile protein of striated flagellar roots of Tetraselmis striata (Salisbury, J. L., A. Baron, B. Surek, and M. Melkonian, 1984, J. Cell Biol., 99:962-970), we have found the distal connecting fiber of Spermatozopsis similis to be immunoreactive by indirect immunofluorescence and immunogold electron microscopy. Electrophoretic and immunoblot analysis indicates that the antigen of S. similis flagellar apparatuses consists, like the Tetraselmis protein, of two acidic isoforms of 20 kD. We conclude that the distal basal body connecting fiber is a contractile organelle and reorients basal bodies during the photophobic response in certain flagellated green algae.
  • Item
    Thumbnail Image
    Differential gene transfers and gene duplications in primary and secondary endosymbioses
    Zauner, S ; Lockhart, P ; Stoebe-Maier, B ; Gilson, P ; McFadden, GI ; Maier, UG (BMC, 2006-04-26)
    BACKGROUND: Most genes introduced into phototrophic eukaryotes during the process of endosymbiosis are either lost or relocated into the host nuclear genome. In contrast, groEL homologues are found in different genome compartments among phototrophic eukaryotes. Comparative sequence analyses of recently available genome data, have allowed us to reconstruct the evolutionary history of these genes and propose a hypothesis that explains the unusual genome distribution of groEL homologues. RESULTS: Our analyses indicate that while two distinct groEL genes were introduced into eukaryotes by a progenitor of plastids, these particular homologues have not been maintained in all evolutionary lineages. This is of significant interest, because two chaperone proteins always co-occur in oxygenic photosynthetic organisms. We infer strikingly different lineage specific processes of evolution involving deletion, duplication and targeting of groEL proteins. CONCLUSION: The requirement of two groEL homologues for chaperon function in phototrophs has provided a constraint that has shaped convergent evolutionary scenarios in divergent evolutionary lineages. GroEL provides a general evolutionary model for studying gene transfers and convergent evolutionary processes among eukaryotic lineages.