School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Development of Plasmodium-specific liver-resident memory CD8+ T cells after heat-killed sporozoite immunization in mice
    Ghilas, S ; Enders, MH ; May, R ; Holz, LE ; Fernandez-Ruiz, D ; Cozijnsen, A ; Mollard, V ; Cockburn, IA ; McFadden, G ; Heath, WR ; Beattie, L (WILEY, 2021-05)
    Malaria remains a major cause of mortality in the world and an efficient vaccine is the best chance of reducing the disease burden. Vaccination strategies for the liver stage of disease that utilise injection of live radiation-attenuated sporozoites (RAS) confer sterile immunity, which is mediated by CD8+ memory T cells, with liver-resident memory T cells (TRM ) being particularly important. We have previously described a TCR transgenic mouse, termed PbT-I, where all CD8+ T cells recognize a specific peptide from Plasmodium. PbT-I form liver TRM cells upon RAS injection and are capable of protecting mice against challenge infection. Here, we utilize this transgenic system to examine whether nonliving sporozoites, killed by heat treatment (HKS), could trigger the development of Plasmodium-specific liver TRM cells. We found that HKS vaccination induced the formation of memory CD8+ T cells in the spleen and liver, and importantly, liver TRM cells were fewer in number than that induced by RAS. Crucially, we showed the number of TRM cells was significantly higher when HKS were combined with the glycolipid α-galactosylceramide as an adjuvant. In the future, this work could lead to development of an antimalaria vaccination strategy that does not require live sporozoites, providing greater utility.
  • Item
    No Preview Available
    Plasmodium falciparum LipB mutants display altered redox and carbon metabolism in asexual stages and cannot complete sporogony in Anopheles mosquitoes
    Biddau, M ; Kumar, TRS ; Henrich, P ; Laine, LM ; Blackburn, GJ ; Chokkathukalam, A ; Li, T ; Sim, KL ; King, L ; Hoffman, SL ; Barrett, MP ; Coombs, GH ; McFadden, GI ; Fidock, DA ; Mueller, S ; Sheiner, L (ELSEVIER SCI LTD, 2021-05)
    Malaria is still one of the most important global infectious diseases. Emergence of drug resistance and a shortage of new efficient antimalarials continue to hamper a malaria eradication agenda. Malaria parasites are highly sensitive to changes in the redox environment. Understanding the mechanisms regulating parasite redox could contribute to the design of new drugs. Malaria parasites have a complex network of redox regulatory systems housed in their cytosol, in their mitochondrion and in their plastid (apicoplast). While the roles of enzymes of the thioredoxin and glutathione pathways in parasite survival have been explored, the antioxidant role of α-lipoic acid (LA) produced in the apicoplast has not been tested. To take a first step in teasing a putative role of LA in redox regulation, we analysed a mutant Plasmodium falciparum (3D7 strain) lacking the apicoplast lipoic acid protein ligase B (lipB) known to be depleted of LA. Our results showed a change in expression of redox regulators in the apicoplast and the cytosol. We further detected a change in parasite central carbon metabolism, with lipB deletion resulting in changes to glycolysis and tricarboxylic acid cycle activity. Further, in another Plasmodium cell line (NF54), deletion of lipB impacted development in the mosquito, preventing the detection of infectious sporozoite stages. While it is not clear at this point if the observed phenotypes are linked, these findings flag LA biosynthesis as an important subject for further study in the context of redox regulation in asexual stages, and point to LipB as a potential target for the development of new transmission drugs.
  • Item
    Thumbnail Image
    The cell wall polysaccharides of a photosynthetic relative of apicomplexans, Chromera velia
    Tortorelli, G ; Pettolino, F ; Lai, D-H ; Tomcala, A ; Bacic, A ; Obornik, M ; Lukes, J ; McFadden, G ; Kroth, P (WILEY, 2021-12)
    Chromerids are a group of alveolates, found in corals, that show peculiar morphological and genomic features. These organisms are evolutionary placed in-between symbiotic dinoflagellates and parasitic apicomplexans. There are two known species of chromerids: Chromera velia and Vitrella brassicaformis. Here, the biochemical composition of the C. velia cell wall was analyzed. Several polysaccharides adorn this structure, with glucose being the most abundant monosaccharide (approx. 80%) and predominantly 4-linked (approx. 60%), suggesting that the chromerids cell wall is mostly cellulosic. The presence of cellulose was cytochemically confirmed with calcofluor white staining of the algal cell. The remaining wall polysaccharides, assuming structures are similar to those of higher plants, are indicative of a mixture of galactans, xyloglucans, heteroxylans, and heteromannans. The present work provides, for the first time, insights into the outermost layers of the photosynthetic alveolate C. velia.
  • Item
    Thumbnail Image
    Plasmodium berghei Hsp90 contains a natural immunogenic I-Ab-restricted antigen common to rodent and human Plasmodium species.
    Enders, MH ; Bayarsaikhan, G ; Ghilas, S ; Chua, YC ; May, R ; de Menezes, MN ; Ge, Z ; Tan, PS ; Cozijnsen, A ; Mollard, V ; Yui, K ; McFadden, GI ; Lahoud, MH ; Caminschi, I ; Purcell, AW ; Schittenhelm, RB ; Beattie, L ; Heath, WR ; Fernandez-Ruiz, D (Elsevier BV, 2021)
    Thorough understanding of the role of CD4 T cells in immunity can be greatly assisted by the study of responses to defined specificities. This requires knowledge of Plasmodium-derived immunogenic epitopes, of which only a few have been identified, especially for the mouse C57BL/6 background. We recently developed a TCR transgenic mouse line, termed PbT-II, that produces CD4+ T cells specific for an MHC class II (I-Ab)-restricted Plasmodium epitope and is responsive to both sporozoites and blood-stage P. berghei. Here, we identify a peptide within the P. berghei heat shock protein 90 as the cognate epitope recognised by PbT-II cells. We show that C57BL/6 mice infected with P. berghei blood-stage induce an endogenous CD4 T cell response specific for this epitope, indicating cells of similar specificity to PbT-II cells are present in the naïve repertoire. Adoptive transfer of in vitro activated TH1-, or particularly TH2-polarised PbT-II cells improved control of P. berghei parasitemia in C57BL/6 mice and drastically reduced the onset of experimental cerebral malaria. Our results identify a versatile, potentially protective MHC-II restricted epitope useful for exploration of CD4 T cell-mediated immunity and vaccination strategies against malaria.
  • Item
    Thumbnail Image
    Mechanisms and targets of Fcγ-receptor mediated immunity to malaria sporozoites
    Feng, G ; Wines, BD ; Kurtovic, L ; Chan, J-A ; Boeuf, P ; Mollard, V ; Cozijnsen, A ; Drew, DR ; Center, RJ ; Marshall, DL ; Chishimba, S ; McFadden, G ; Dent, AE ; Chelimo, K ; Boyle, MJ ; Kazura, JW ; Hogarth, PM ; Beeson, JG (NATURE PORTFOLIO, 2021-03-19)
    A highly protective vaccine will greatly facilitate achieving and sustaining malaria elimination. Understanding mechanisms of antibody-mediated immunity is crucial for developing vaccines with high efficacy. Here, we identify key roles in humoral immunity for Fcγ-receptor (FcγR) interactions and opsonic phagocytosis of sporozoites. We identify a major role for neutrophils in mediating phagocytic clearance of sporozoites in peripheral blood, whereas monocytes contribute a minor role. Antibodies also promote natural killer cell activity. Mechanistically, antibody interactions with FcγRIII appear essential, with FcγRIIa also required for maximum activity. All regions of the circumsporozoite protein are targets of functional antibodies against sporozoites, and N-terminal antibodies have more activity in some assays. Functional antibodies are slowly acquired following natural exposure to malaria, being present among some exposed adults, but uncommon among children. Our findings reveal targets and mechanisms of immunity that could be exploited in vaccine design to maximize efficacy.