School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    Thumbnail Image
    Placental imprinting of SLC22A3 in the IGF2R imprinted domain is conserved in therian mammals
    Ishihara, T ; Griffith, OW ; Suzuki, S ; Renfree, MB (BMC, 2022-08-27)
    BACKGROUND: The eutherian IGF2R imprinted domain is regulated by an antisense long non-coding RNA, Airn, which is expressed from a differentially methylated region (DMR) in mice. Airn silences two neighbouring genes, Solute carrier family 22 member 2 (Slc22a2) and Slc22a3, to establish the Igf2r imprinted domain in the mouse placenta. Marsupials also have an antisense non-coding RNA, ALID, expressed from a DMR, although the exact function of ALID is currently unknown. The eutherian IGF2R DMR is located in intron 2, while the marsupial IGF2R DMR is located in intron 12, but it is not yet known whether the adjacent genes SLC22A2 and/or SLC22A3 are also imprinted in the marsupial lineage. In this study, the imprinting status of marsupial SLC22A2 and SLC22A3 in the IGF2R imprinted domain in the chorio-vitelline placenta was examined in a marsupial, the tammar wallaby. RESULTS: In the tammar placenta, SLC22A3 but not SLC22A2 was imprinted. Tammar SLC22A3 imprinting was evident in placental tissues but not in the other tissues examined in this study. A putative promoter of SLC22A3 lacked DNA methylation, suggesting that this gene is not directly silenced by a DMR on its promoter as seen in the mouse. Based on immunofluorescence, we confirmed that the tammar SLC22A3 is localised in the endodermal cell layer of the tammar placenta where nutrient trafficking occurs. CONCLUSIONS: Since SLC22A3 is imprinted in the tammar placenta, we conclude that this placental imprinting of SLC22A3 has been positively selected after the marsupial and eutherian split because of the differences in the DMR location. Since SLC22A3 is known to act as a transporter molecule for nutrient transfer in the eutherian placenta, we suggest it was strongly selected to control the balance between supply and demand of nutrients in marsupial as it does in eutherian placentas.
  • Item
    Thumbnail Image
    Identification of a Novel PNMA-MS1 Gene inMarsupials Suggests the LTR Retrotransposon-Derived PNMA leGenes Evolved Differently inMarsupials and Eutherians
    Iwasaki, S ; Suzuki, S ; Pelekanos, M ; Clark, H ; Ono, R ; Shaw, G ; Renfree, MB ; Kaneko-Ishino, T ; Ishino, F (OXFORD UNIV PRESS, 2013-10)
    Two major gene families derived from Ty3/Gypsy long terminal repeat (LTR) retrotransposons were recently identified in mammals. The sushi-ichi retrotransposon homologue (SIRH) family comprises 12 genes: 11 in eutherians including Peg10 and Peg11/Rtl1 that have essential roles in the eutherian placenta and 1 that is marsupial specific. Fifteen and 12 genes were reported in the second gene family, para-neoplastic antigen MA (PNMA), in humans and mice, respectively, although their biological functions and evolutionary history remain largely unknown. Here, we identified two novel candidate PNMA genes, PNMA-MS1 and -MS2 in marsupials. Like all eutherian-specific PNMA genes, they exhibit the highest homology to a Gypsy12_DR (DR, Danio rerio) Gag protein. PNMA-MS1 is conserved in both Australian and South American marsupial species, the tammar wallaby and grey short-tailed opossum. However, no PNMA-MS1 orthologue was found in eutherians, monotremes or non-mammalian vertebrates. PNMA-MS1 was expressed in the ovary, mammary gland and brain during development and growth in the tammar, suggesting that PNMA-MS1 may have acquired a marsupial-specific function. However, PNMA-MS2 seems to be a pseudogene. The absence of marsupial orthologues of eutherian PNMA genes suggests that the retrotransposition events of the Gypsy12_DR-related retrotransposons that gave rise to the PNMA family occurred after the divergence of marsupials and eutherians.
  • Item
    Thumbnail Image
    Postnatal epigenetic reprogramming in the germline of a marsupial, the tammar wallaby
    Suzuki, S ; Shaw, G ; Renfree, MB (BMC, 2013-06-03)
    BACKGROUND: Epigenetic reprogramming is essential to restore totipotency and to reset genomic imprints during mammalian germ cell development and gamete formation. The dynamic DNA methylation change at DMRs (differentially methylated regions) within imprinted domains and of retrotransposons is characteristic of this process. Both marsupials and eutherian mammals have genomic imprinting but these two subgroups have been evolving separately for up to 160 million years. Marsupials have a unique reproductive strategy and deliver tiny, altricial young that complete their development within their mother's pouch. Germ cell proliferation in the genital ridge continues after birth in the tammar wallaby (Macropus eugenii), and it is only after 25 days postpartum that female germ cells begin to enter meiosis and male germ cells begin to enter mitotic arrest. At least two marsupial imprinted loci (PEG10 and H19) also have DMRs. To investigate the evolution of epigenetic reprogramming in the marsupial germline, here we collected germ cells from male pouch young of the tammar wallaby and analysed the methylation status of PEG10 and H19 DMR, an LTR (long terminal repeat) and a non-LTR retrotransposons. RESULTS: Demethylation of the H19 DMR was almost completed by 14 days postpartum and de-novo methylation started from 34 days postpartum. These stages correspond to 14 days after the completion of primordial germ cell migration into genital ridge (demethylation) and 9 days after the first detection of mitotic arrest (re-methylation) in the male germ cells. Interestingly, the PEG10 DMR was already unmethylated at 7 days postpartum, suggesting that the timing of epigenetic reprogramming is not the same at all genomic loci. Retrotransposon methylation was not completely removed after the demethylation event in the germ cells, similar to the situation in the mouse. CONCLUSIONS: Thus, despite the postnatal occurrence of epigenetic reprogramming and the persistence of genome-wide undermethylation for 20 days in the postnatal tammar, the relative timing and mechanism of germ cell reprogramming are conserved between marsupials and eutherians. We suggest that the basic mechanism of epigenetic reprogramming had already been established before the marsupial-eutherian split and has been faithfully maintained for at least 160 million years and may reflect the timing of the onset of mitotic arrest in the male germline.
  • Item
    Thumbnail Image
    Promoter-Specific Expression and Imprint Status of Marsupial IGF2
    Stringer, JM ; Suzuki, S ; Pask, AJ ; Shaw, G ; Renfree, MB ; Thomas, T (PUBLIC LIBRARY SCIENCE, 2012-07-25)
    In mice and humans, IGF2 has multiple promoters to maintain its complex tissue- and developmental stage-specific imprinting and expression. IGF2 is also imprinted in marsupials, but little is known about its promoter region. In this study, three IGF2 transcripts were isolated from placental and liver samples of the tammar wallaby, Macropus eugenii. Each transcript contained a unique 5' untranslated region, orthologous to the non-coding exons derived from promoters P1-P3 in the human and mouse IGF2 locus. The expression of tammar IGF2 was predominantly from the P2 promoter, similar to humans. Expression of IGF2 was higher in pouch young than in the adult and imprinting was highly tissue and developmental-stage specific. Interestingly, while IGF2 was expressed throughout the placenta, imprinting seemed to be restricted to the vascular, trilaminar region. In addition, IGF2 was monoallelically expressed in the adult mammary gland while in the liver it switched from monoalleleic expression in the pouch young to biallelic in the adult. These data suggest a complex mode of IGF2 regulation in marsupials as seen in eutherian mammals. The conservation of the IGF2 promoters suggests they originated before the divergence of marsupials and eutherians, and have been selectively maintained for at least 160 million years.
  • Item
    Thumbnail Image
    The Evolution of Mammalian Genomic Imprinting Was Accompanied by the Acquisition of Novel CpG Islands
    Suzuki, S ; Shaw, G ; Kaneko-Ishino, T ; Ishino, F ; Renfree, MB (OXFORD UNIV PRESS, 2011)
    Parent-of-origin-dependent expression of imprinted genes is mostly associated with allele-specific DNA methylation of the CpG islands (CGIs) called germ line differentially methylated regions (gDMRs). Although the essential role of gDMRs for genomic imprinting has been well established, little is known about how they evolved. In several imprinted loci, the CGIs forming gDMRs may have emerged with the insertion of a retrotransposon or retrogene. To examine the generality of the hypothesis that the CGIs forming gDMRs were novel CGIs recently acquired during mammalian evolution, we reviewed the time of novel CGI emergence for all the maternal gDMR loci using the novel data analyzed in this study combined with the data from previous reports. The comparative sequence analyses using mouse, human, dog, cow, elephant, tammar, opossum, platypus, and chicken genomic sequences were carried out for Peg13, Meg1/Grb10, Plagl1/Zac1, Gnas, and Slc38a4 imprinted loci to obtain comprehensive results. The combined data showed that emergence of novel CGIs occurred universally in the maternal gDMR loci at various time points during mammalian evolution. Furthermore, the analysis of Meg1/Grb10 locus provided evidence that gradual base pair-wise sequence change was involved in the accumulation of CpG sequence, suggesting the mechanism of novel CGI emergence is more complex than the suggestion that CpG sequences originated solely by insertion of CpG-rich transposable elements. We propose that acquisition of novel CGIs was a key genomic change for the evolution of imprinting and that it usually occurred in the maternal gDMR loci.
  • Item
    Thumbnail Image
    Selected imprinting of INS in the marsupial
    Stringer, JM ; Suzuki, S ; Pask, AJ ; Shaw, G ; Renfree, MB (BMC, 2012-08-28)
    BACKGROUND: In marsupials, growth and development of the young occur postnatally, regulated by milk that changes in composition throughout the long lactation. To initiate lactation in mammals, there is an absolute requirement for insulin (INS), a gene known to be imprinted in the placenta. We therefore examined whether INS is imprinted in the mammary gland of the marsupial tammar wallaby (Macropus eugenii) and compared its expression with that of insulin-like growth factor 2 (IGF2). RESULTS: INS was expressed in the mammary gland and significantly increased, while IGF2 decreased, during established milk production. Insulin and IGF2 were both detected in the mammary gland macrophage cells during early lactation and in the alveolar cells later in lactation. Surprisingly, INS, which was thought only to be imprinted in the therian yolk sac, was imprinted and paternally expressed in the liver of the developing young, monoallelically expressed in the tammar mammary gland and biallelic in the stomach and intestine. The INS transcription start site used in the liver and mammary gland was differentially methylated. CONCLUSIONS: This is the first study to identify tissue-specific INS imprinting outside the yolk sac. These data suggest that there may be an advantage of selective monoallelic expression in the mammary gland and that this may influence the growth of the postnatal young. These results are not consistent with the parental conflict hypothesis, but instead provide support for the maternal-infant co-adaptation hypothesis. Thus, imprinting in the mammary gland maybe as critical for postnatal growth and development in mammals as genomic imprinting in the placenta is prenatally.
  • Item
    Thumbnail Image
    Characterisation of marsupial PHLDA2 reveals eutherian specific acquisition of imprinting
    Suzuki, S ; Shaw, G ; Kaneko-Ishino, T ; Ishino, F ; Renfree, MB (BIOMED CENTRAL LTD, 2011-08-19)
    BACKGROUND: Genomic imprinting causes parent-of-origin specific gene expression by differential epigenetic modifications between two parental genomes. We previously reported that there is no evidence of genomic imprinting of CDKN1C in the KCNQ1 domain in the placenta of an Australian marsupial, the tammar wallaby (Macropus eugenii) whereas tammar IGF2 and H19, located adjacent to the KCNQ1 domain in eutherian mammals, are imprinted. We have now identified and characterised the marsupial orthologue of PHLDA2, another gene in the KCNQ1 domain (also known as IPL or TSSC3) that is imprinted in eutherians. In mice, Phlda2 is a dose-sensitive negative regulator of placental growth, as Cdkn1c is for embryonic growth. RESULTS: Tammar PHLDA2 is highly expressed in the yolk sac placenta compared to other fetal tissues, confirming a similar expression pattern to that of mouse Phlda2. However, tammar PHLDA2 is biallelically expressed in both the fetus and yolk sac placenta, so it is not imprinted. The lack of imprinting in tammar PHLDA2 suggests that the acquisition of genomic imprinting of the KCNQ1 domain in eutherian mammals, accompanied with gene dosage reduction, occurred after the split of the therian mammals into the marsupials and eutherians. CONCLUSIONS: Our results confirm the idea that acquisition of genomic imprinting in the KCNQ1 domain occurred specifically in the eutherian lineage after the divergence of marsupials, even though imprinting of the adjacent IGF2-H19 domain arose before the marsupial-eutherian split. These data are consistent with the hypothesis that genomic imprinting of the KCNQ1 domain may have contributed to the evolution of more complex placentation in the eutherian lineage by reduction of the gene dosage of negative regulators for both embryonic and placental growth.