School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    Thumbnail Image
    Uterine molecular changes for non-invasive embryonic attachment in the marsupials Macropus eugenii (Macropodidae) and Trichosurus vulpecula (Phalangeridae)
    Laird, MK ; Dargan, JR ; Paterson, L ; Murphy, CR ; McAllan, BM ; Shaw, G ; Renfree, MB ; Thompson, MB (WILEY, 2017-10)
    Pregnancy in mammals requires remodeling of the uterus to become receptive to the implanting embryo. Remarkably similar morphological changes to the uterine epithelium occur in both eutherian and marsupial mammals, irrespective of placental type. Nevertheless, molecular differences in uterine remodeling indicate that the marsupial uterus employs maternal defences, including molecular reinforcement of the uterine epithelium, to regulate embryonic invasion. Non-invasive (epitheliochorial) embryonic attachment in marsupials likely evolved secondarily from invasive attachment, so uterine defences in these species may prevent embryonic invasion. We tested this hypothesis by identifying localization patterns of Talin, a key basal anchoring molecule, in the uterine epithelium during pregnancy in the tammar wallaby (Macropus eugenii; Macropodidae) and the brush tail possum (Trichosurus vulpecula; Phalangeridae). Embryonic attachment is non-invasive in both species, yet Talin undergoes a clear distributional change during pregnancy in M. eugenii, including recruitment to the base of the uterine epithelium just before attachment, that closely resembles that of invasive implantation in the marsupial species Sminthopsis crassicaudata. Basal localization occurs throughout pregnancy in T. vulpecula, although, as for M. eugenii, this pattern is most specific prior to attachment. Such molecular reinforcement of the uterine epithelium for non-invasive embryonic attachment in marsupials supports the hypothesis that less-invasive and non-invasive embryonic attachment in marsupials may have evolved via accrual of maternal defences. Recruitment of basal molecules, including Talin, to the uterine epithelium may have played a key role in this transition.
  • Item
    Thumbnail Image
    Uterine morphology during diapause and early pregnancy in the tammar wallaby (Macropus eugenii)
    Laird, MK ; Hearn, CM ; Shaw, G ; Renfree, MB (WILEY-BLACKWELL, 2016-09)
    In mammals, embryonic diapause, or suspension of embryonic development, occurs when embryos at the blastocyst stage are arrested in growth and metabolism. In the tammar wallaby (Macropus eugenii), there are two separate uteri, only one of which becomes gravid with the single conceptus at a post-partum oestrus, so changes during pregnancy can be compared between the gravid and non-gravid uterus within the same individual. Maintenance of the viable blastocyst and inhibition of further conceptus growth during diapause in the tammar is completely dependent on the uterine environment. Although the specific endocrine and seasonal signals are well established, much less is known about the cellular changes required to create this environment. Here we present the first detailed study of uterine morphology during diapause and early pregnancy of the tammar wallaby. We combined transmission electron microscopy and light microscopy to describe the histological and ultrastructural changes to luminal and glandular epithelial cells. At entry into diapause after the post-partum oestrus and formation of the new conceptus, there was an increase in abundance of organelles associated with respiration in the endometrial cells of the newly gravid uterus, particularly in the endoplasmic reticulum and mitochondria, as well as an increase in secretory activity. Organelle changes and active secretion then ceased in these cells as they became quiescent and remained so for the duration of diapause. In contrast, cells of the non-gravid, post-partum, contralateral uterus underwent sloughing and remodelling during this time and some organelle changes in glandular epithelial cells continued throughout diapause, suggesting these cells are not completely quiescent during diapause, although no active secretion occurred. These findings demonstrate that diapause, like pregnancy, is under unilateral endocrine control in the tammar, and that preparation for and maintenance of diapause requires substantial changes to uterine endometrial cell ultrastructure and activity.
  • Item
    Thumbnail Image
    Non-invasive placentation in the marsupials Macropus eugenii (Macropodidae) and Trichosurus vulpecula (Phalangeridae) involves redistribution of uterine Desmoglein-2
    Laird, MK ; McShea, H ; Murphy, CR ; McAllan, BM ; Shaw, G ; Renfree, MB ; Thompson, MB (WILEY, 2018-01-01)
    In mammalian pregnancy, the uterus is remodeled to become receptive to embryonic implantation. Since non-invasive placentation in marsupials is likely derived from invasive placentation, and is underpinned by intra-uterine conflict between mother and embryo, species with non-invasive placentation may employ a variety of molecular mechanisms to maintain an intact uterine epithelium and to prevent embryonic invasion. Identifying such modifications to the uterine epithelium of marsupial species with non-invasive placentation is key to understanding how conflict is mediated during pregnancy in different mammalian groups. Desmoglein-2, involved in maintaining lateral cell–cell adhesion of the uterine epithelium, is redistributed before implantation to facilitate embryo invasion in mammals with invasive placentation. We identified localization patterns of this cell adhesion molecule throughout pregnancy in two marsupial species with non-invasive placentation, the tammar wallaby (Macropus eugenii; Macropodidae), and the brushtail possum (Trichosurus vulpecula; Phalangeridae). Interestingly, Desmoglein-2 redistribution also occurs in both M. eugenii and T. vulpecula, suggesting that cell adhesion, and thus integrity of the uterine epithelium, is reduced during implantation regardless of placental type, and may be an important component of uterine remodeling. Desmoglein-2 also localizes to the mesenchymal stromal cells of M. eugenii and to epithelial cell nuclei in T. vulpecula, suggesting its involvement in cellular processes that are independent of adhesion and may compensate for reduced lateral adhesion in the uterine epithelium. We conclude that non-invasive placentation in marsupials involves diverse and complementary strategies to maintain an intact epithelial barrier.
  • Item
    Thumbnail Image
    Characterisation of major histocompatibility complex class I genes at the fetal-maternal interface of marsupials
    Buentjen, I ; Drews, B ; Frankenberg, SR ; Hildebrandt, TB ; Renfree, MB ; Menzies, BR (SPRINGER, 2015-07)
    Major histocompatibility complex class I molecules (MHC-I) are expressed at the cell surface and are responsible for the presentation of self and non-self antigen repertoires to the immune system. Eutherian mammals express both classical and non-classical MHC-I molecules in the placenta, the latter of which are thought to modulate the maternal immune response during pregnancy. Marsupials last shared a common ancestor with eutherian mammals such as humans and mice over 160 million years ago. Since, like eutherians, they have an intra-uterine development dependent on a placenta, albeit a short-lived and less invasive one, they provide an opportunity to investigate the evolution of MHC-I expression at the fetal-maternal interface. We have characterised MHC-I mRNA expression in reproductive tissues of the tammar wallaby (Macropus eugenii) from the time of placental attachment to day 25 of the 26.5 day pregnancy. Putative classical MHC-I genes were expressed in the choriovitelline placenta, fetus, and gravid endometrium throughout the whole of this period. The MHC-I classical sequences were phylogenetically most similar to the Maeu-UC (50/100 clones) and Maeu-UA genes (7/100 clones). Expression of three non-classical MHC-I genes (Maeu-UD, Maeu-UK and Maeu-UM) were also present in placental samples. The results suggest that expression of classical and non-classical MHC-I genes in extant marsupial and eutherian mammals may have been necessary for the evolution of the ancestral therian placenta and survival of the mammalian fetus at the maternal-fetal interface.
  • Item
    Thumbnail Image
    Embryos and embryonic stem cells from the white rhinoceros
    Hildebrandt, TB ; Hermes, R ; Colleoni, S ; Diecke, S ; Holtze, S ; Renfree, MB ; Stejskal, J ; Hayashi, K ; Drukker, M ; Loi, P ; Goeritz, F ; Lazzari, G ; Galli, C (NATURE PUBLISHING GROUP, 2018-07-04)
    The northern white rhinoceros (NWR, Ceratotherium simum cottoni) is the most endangered mammal in the world with only two females surviving. Here we adapt existing assisted reproduction techniques (ART) to fertilize Southern White Rhinoceros (SWR) oocytes with NWR spermatozoa. We show that rhinoceros oocytes can be repeatedly recovered from live SWR females by transrectal ovum pick-up, matured, fertilized by intracytoplasmic sperm injection and developed to the blastocyst stage in vitro. Next, we generate hybrid rhinoceros embryos in vitro using gametes of NWR and SWR. We also establish embryonic stem cell lines from the SWR blastocysts. Blastocysts are cryopreserved for later embryo transfer. Our results indicate that ART could be a viable strategy to rescue genes from the iconic, almost extinct, northern white rhinoceros and may also have broader impact if applied with similar success to other endangered large mammalian species.
  • Item
    Thumbnail Image
    Androgen and Oestrogen Affect the Expression of Long Non-Coding RNAs During Phallus Development in a Marsupial
    Chen, Y ; Kuroki, Y ; Shaw, G ; Pask, AJ ; Yu, H ; Toyoda, A ; Fujiyama, A ; Renfree, MB (MDPI, 2019-03)
    There is increasing evidence that long non-coding RNAs (lncRNAs) are important for normal reproductive development, yet very few lncRNAs have been identified in phalluses so far. Unlike eutherians, phallus development in the marsupial tammar wallaby occurs post-natally, enabling manipulation not possible in eutherians in which differentiation occurs in utero. We treated with sex steroids to determine the effects of androgen and oestrogen on lncRNA expression during phallus development. Hormonal manipulations altered the coding and non-coding gene expression profile of phalluses. We identified several predicted co-regulatory lncRNAs that appear to be co-expressed with the hormone-responsive candidate genes regulating urethral closure and phallus growth, namely IGF1, AR and ESR1. Interestingly, more than 50% of AR-associated coding genes and lncRNAs were also associated with ESR1. In addition, we identified and validated three novel co-regulatory and hormone-responsive lncRNAs: lnc-BMP5, lnc-ZBTB16 and lncRSPO4. Lnc-BMP5 was detected in the urethral epithelium of male phalluses and was downregulated by oestrogen in males. Lnc-ZBTB16 was downregulated by oestrogen treatment in male phalluses at day 50 post-partum (pp). LncRSPO4 was downregulated by adiol treatment in female phalluses but increased in male phalluses after castration. Thus, the expression pattern and hormone responsiveness of these lncRNAs suggests a physiological role in the development of the phallus.
  • Item
    Thumbnail Image
    DNA methylation dynamics in the germline of the marsupial tammar wallaby, Macropus eugenii
    Ishihara, T ; Hickford, D ; Shaw, G ; Pask, AJ ; Renfree, MB (OXFORD UNIV PRESS, 2019-02)
    Parent specific-DNA methylation is the genomic imprint that induces mono-allelic gene expression dependent on parental origin. Resetting of DNA methylation in the germ line is mediated by a genome-wide re-methylation following demethylation known as epigenetic reprogramming. Most of our understanding of epigenetic reprogramming in germ cells is based on studies in mice, but little is known about this in marsupials. We examined genome-wide changes in DNA methylation levels by measuring 5-methylcytosine expression, and mRNA expression and protein localization of the key enzyme DNA methyltransferase 3 L (DNMT3L) during germ cell development of the marsupial tammar wallaby, Macropus eugenii. Our data clearly showed that the relative timing of genome-wide changes in DNA methylation was conserved between the tammar and mouse, but in the tammar it all occurred post-natally. In the female tammar, genome-wide demethylation occurred in two phases, I and II, suggesting that there is an unidentified demethylation mechanism in this species. Although the localization pattern of DNMT3L in male germ cells differed, the expression patterns of DNMT3L were broadly conserved between tammar, mouse and human. Thus, the basic mechanisms of DNA methylation-reprogramming must have been established before the marsupial-eutherian mammal divergence over 160 Mya.
  • Item
    Thumbnail Image
    Adaptation and conservation insights from the koala genome
    Johnson, RN ; O'Meally, D ; Chen, Z ; Etherington, GJ ; Ho, SYW ; Nash, WJ ; Grueber, CE ; Cheng, Y ; Whittington, CM ; Dennison, S ; Peel, E ; Haerty, W ; O'Neill, RJ ; Colgan, D ; Russell, TL ; Alquezar-Planas, DE ; Attenbrow, V ; Bragg, JG ; Brandies, PA ; Chong, AY-Y ; Deakin, JE ; Di Palma, F ; Duda, Z ; Eldridge, MDB ; Ewart, KM ; Hogg, CJ ; Frankham, GJ ; Georges, A ; Gillett, AK ; Govendir, M ; Greenwood, AD ; Hayakawa, T ; Helgen, KM ; Hobbs, M ; Holleley, CE ; Heider, TN ; Jones, EA ; King, A ; Madden, D ; Graves, JAM ; Morris, KM ; Neaves, LE ; Patel, HR ; Polkinghorne, A ; Renfree, MB ; Robin, C ; Salinas, R ; Tsangaras, K ; Waters, PD ; Waters, SA ; Wright, B ; Wilkins, MR ; Timms, P ; Belov, K (NATURE PORTFOLIO, 2018-08)
    The koala, the only extant species of the marsupial family Phascolarctidae, is classified as 'vulnerable' due to habitat loss and widespread disease. We sequenced the koala genome, producing a complete and contiguous marsupial reference genome, including centromeres. We reveal that the koala's ability to detoxify eucalypt foliage may be due to expansions within a cytochrome P450 gene family, and its ability to smell, taste and moderate ingestion of plant secondary metabolites may be due to expansions in the vomeronasal and taste receptors. We characterized novel lactation proteins that protect young in the pouch and annotated immune genes important for response to chlamydial disease. Historical demography showed a substantial population crash coincident with the decline of Australian megafauna, while contemporary populations had biogeographic boundaries and increased inbreeding in populations affected by historic translocations. We identified genetically diverse populations that require habitat corridors and instituting of translocation programs to aid the koala's survival in the wild.
  • Item
    Thumbnail Image
    Identification of a novel antisense noncoding RNA, ALID, transcribed from the putative imprinting control region of marsupial IGF2R
    Suzuki, S ; Shaw, G ; Renfree, MB (BMC, 2018-09-29)
    BACKGROUND: Genomic imprinting leads to maternal expression of IGF2R in both mouse and opossum. In mouse, the antisense long noncoding (lnc) RNA Airn, which is paternally expressed from the differentially methylated region (DMR) in the second intron of Igf2r, is required to silence the paternal Igf2r. In opossum, however, intriguingly, the DMR was reported to be in a different downstream intron (intron 11) and there was no antisense lncRNA detected in previous analyses. Therefore, clarifying the imprinting mechanism of marsupial IGF2R is of great relevance for understanding the origin and evolution of genomic imprinting in the IGF2R locus. Thus, the antisense lncRNA associated with the marsupial DMR can be considered as the 'missing link'. In this study, we identified a novel antisense lncRNA, ALID, after detailed analysis of the IGF2R locus in an Australian marsupial, the tammar wallaby, Macropus eugenii, and compared it to that of the grey short-tailed opossum, Monodelphis domestica. RESULTS: Tammar IGF2R showed maternal expression and had a maternally methylated CpG island (CGI) in intron 12 as well as a promoter CGI without differential methylation, but none in the second intron. Re-analysis of the IGF2R of opossum detected the CGI in intron 12, not intron 11, as previously reported, confirming that the DMR in intron 12 is conserved between these marsupials and so is the putative imprinting control region of marsupial IGF2R. ALID is paternally expressed from the middle of the DMR and is approximately 650 bp long with a single exon structure that is extremely short compared to Airn. Hence, the lncRNA transcriptional overlap of the IGF2R promoter, which is essential for the Igf2r silencing in the mouse, is likely absent in tammar. This suggests that fundamental differences in the lncRNA-based silencing mechanisms evolved in eutherian and marsupial IGF2R and may reflect the lack of differential methylation in the promoter CGI of marsupial IGF2R. CONCLUSIONS: Our study thus provides the best candidate factor for establishing paternal silencing of marsupial IGF2R without transcriptional overlap, which is distinct from the Igf2r silencing mechanism of Airn, but which may be analogous to the mode of action for the flanking Slc22a2 and Slc22a3 gene silencing in the mouse placenta.
  • Item
    Thumbnail Image
    Molecular conservation of marsupial and eutherian placentation and lactation
    Guernsey, MW ; Chuong, EB ; Cornelis, G ; Renfree, MB ; Baker, JC (ELIFE SCIENCES PUBLICATIONS LTD, 2017-09-12)
    Eutherians are often mistakenly termed 'placental mammals', but marsupials also have a placenta to mediate early embryonic development. Lactation is necessary for both infant and fetal development in eutherians and marsupials, although marsupials have a far more complex milk repertoire that facilitates morphogenesis of developmentally immature young. In this study, we demonstrate that the anatomically simple tammar placenta expresses a dynamic molecular program that is reminiscent of eutherian placentation, including both fetal and maternal signals. Further, we provide evidence that genes facilitating fetal development and nutrient transport display convergent co-option by placental and mammary gland cell types to optimize offspring success.