School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    Thumbnail Image
    The Metabolic Response of Brachypodium Roots to the Interaction with Beneficial Bacteria Is Affected by the Plant Nutritional Status
    Schillaci, M ; Kehelpannala, C ; Martinez-Seidel, F ; Smith, PMC ; Arsova, B ; Watt, M ; Roessner, U (MDPI, 2021-06)
    The potential of plant growth promoting (PGP) bacteria in improving the performance of plants in suboptimal environments is increasingly acknowledged, but little information is available on the mechanisms underlying this interaction, particularly when plants are subjected to a combination of stresses. In this study, we investigated the effects of the inoculation with the PGP bacteria Azospirillum brasilense (Azospirillum) on the metabolism of the model cereal Brachypodium distachyon (Brachypodium) grown at low temperatures and supplied with insufficient phosphorus. Investigating polar metabolite and lipid fluctuations during early plant development, we found that the bacteria initially elicited a defense response in Brachypodium roots, while at later stages Azospirillum reduced the stress caused by phosphorus deficiency and improved root development of inoculated plants, particularly by stimulating the growth of branch roots. We propose that the interaction of the plant with Azospirillum was influenced by its nutritional status: bacteria were sensed as pathogens while plants were still phosphorus sufficient, but the interaction became increasingly beneficial for the plants as their phosphorus levels decreased. Our results provide new insights on the dynamics of the cereal-PGP bacteria interaction, and contribute to our understanding of the role of beneficial microorganisms in the growth of cereal crops in suboptimal environments.
  • Item
    Thumbnail Image
    Wheat Can Access Phosphorus From Algal Biomass as Quickly and Continuously as From Mineral Fertilizer
    Mau, L ; Kant, J ; Walker, R ; Kuchendorf, CM ; Schrey, SD ; Roessner, U ; Watt, M (FRONTIERS MEDIA SA, 2021-01-28)
    Algae can efficiently take up excess nutrients from waterways, making them a valuable resource potentially capable of replacing synthesized and mined fertilizers for agriculture. The capacity of algae to fertilize crops has been quantified, but it is not known how the algae-derived nutrients become available to plants. We aimed to address this question: what are the temporal dynamics of plant growth responses to algal biomass? to better propose mechanisms by which plants acquire nutrients from algal biomass and thereby study and promote those processes in future agricultural applications. Data from various sources were transformed and used to reconstruct the nutrient release from the algae Chlorella vulgaris and subsequent uptake by wheat (Triticum aestivum L.) (as reported in Schreiber et al., 2018). Plants had received 0.1x or 1x dried algae or wet algae, or zero, 0.1x or 1x mineral fertilizer calculated from agricultural practices for P application and grown to 55 days in three soils. Contents of P and other nutrients acquired from algae were as high as from mineral fertilizer, but varied based on moisture content and amount of algae applied to soils (by 55 days after sowing plants with 1x mineral fertilizer and 1x dried algae had 5.6 mg P g DWshoot; 2.2-fold more than those with 0 or 0.1x mineral fertilizer, 0.1x dried algae and wet algae, and 1x wet algae). Absolute and relative leaf area growth and estimated P uptake rates showed similar dynamics, indicating that wheat acquires P from algae quickly. A model proposes that algal fertilizer promotes wheat growth after rapid transformation in soil to inorganic nutrients. We conclude theoretically that phosphorus from algal biomass is available to wheat seedlings upon its application and is released gradually over time with minor differences related to moisture content on application. The growth and P uptake kinetics hint at nutrient forms, including N, and biomass stimulation worthy of research to further exploit algae in sustainable agriculture practices. Temporal resolved phenotype analyses in combination with a mass-balance approach is helpful for understanding resource uptake from recycled and biofertilizer sources by plants.
  • Item
    Thumbnail Image
    Time-resolution of the shoot and root growth of the model cereal Brachypodium in response to inoculation with Azospirillum bacteria at low phosphorus and temperature
    Schillaci, M ; Arsova, B ; Walker, R ; Smith, PMC ; Nagel, KA ; Roessner, U ; Watt, M (Springer Verlag, 2021-01)
    A non-invasive plant phenotyping platform, GrowScreen-PaGe, was used to resolve the dynamics of shoot and root growth of the model cereal Brachypodium (Brachypodium distachyon Bd21-3) in response to the plant growth promoting (PGP) bacteria Azospirillum (Azospirillum brasilense Sp245). Inoculated Brachypodium plants had greater early vigor and higher P use efficiency than non-inoculated Brachypodium at low P and low temperature conditions. Root systems were imaged non-invasively at eight time points and data combined with leaf area, shoot biomass and nutrient content from destructive subsamples at 7, 14 and 21 days after inoculation (DAI). Azospirillum colonisation of roots improved Brachypodium shoot and, to a greater degree, root growth in three independent experiments. Inoculation promoted P use efficiency in shoots but not P concentration or uptake, despite increased total root length. Longer roots in inoculated plants arose from twofold faster branch root growth but slower axile root growth, detected at 11 DAI. Analysis of the spatio-temporal phenotypes indicated that the effects of Azospirillum inoculation increased as shoot P concentration declined, but the magnitude depended on the time after inoculation and growth rate of branch roots compared to axile roots. High throughput plant phenotyping platforms allow the details of plant-microorganism symbioses to be resolved, offering insights into the timing of changes in different tissues to allow molecular mechanisms to be determined.