School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    No Preview Available
    Metaphor-A workflow for streamlined assembly and binning of metagenomes.
    Salazar, VW ; Shaban, B ; Quiroga, MDM ; Turnbull, R ; Tescari, E ; Rossetto Marcelino, V ; Verbruggen, H ; Lê Cao, K-A (Oxford University Press (OUP), 2022-12-28)
    Recent advances in bioinformatics and high-throughput sequencing have enabled the large-scale recovery of genomes from metagenomes. This has the potential to bring important insights as researchers can bypass cultivation and analyze genomes sourced directly from environmental samples. There are, however, technical challenges associated with this process, most notably the complexity of computational workflows required to process metagenomic data, which include dozens of bioinformatics software tools, each with their own set of customizable parameters that affect the final output of the workflow. At the core of these workflows are the processes of assembly-combining the short-input reads into longer, contiguous fragments (contigs)-and binning, clustering these contigs into individual genome bins. The limitations of assembly and binning algorithms also pose different challenges depending on the selected strategy to execute them. Both of these processes can be done for each sample separately or by pooling together multiple samples to leverage information from a combination of samples. Here we present Metaphor, a fully automated workflow for genome-resolved metagenomics (GRM). Metaphor differs from existing GRM workflows by offering flexible approaches for the assembly and binning of the input data and by combining multiple binning algorithms with a bin refinement step to achieve high-quality genome bins. Moreover, Metaphor generates reports to evaluate the performance of the workflow. We showcase the functionality of Metaphor on different synthetic datasets and the impact of available assembly and binning strategies on the final results.
  • Item
    No Preview Available
    Ten Ostreobium (Ulvophyceae) strains from Great Barrier Reef corals as a resource for algal endolith biology and genomics
    Pasella, MM ; Lee, M-FE ; Marcelino, VR ; Willis, A ; Verbruggen, H (TAYLOR & FRANCIS LTD, 2022-07-04)
  • Item
    Thumbnail Image
    Metatranscriptomic Identification of Diverse and Divergent RNA Viruses in Green and Chlorarachniophyte Algae Cultures
    Charon, J ; Marcelino, VR ; Wetherbee, R ; Verbruggen, H ; Holmes, EC (MDPI AG, 2020-10-19)
    Our knowledge of the diversity and evolution of the virosphere will likely increase dramatically with the study of microbial eukaryotes, including the microalgae within which few RNA viruses have been documented. By combining total RNA sequencing with sequence and structural-based homology detection, we identified 18 novel RNA viruses in cultured samples from two major groups of microbial algae: the chlorophytes and the chlorarachniophytes. Most of the RNA viruses identified in the green algae class Ulvophyceae were related to the Tombusviridae and Amalgaviridae viral families commonly associated with land plants. This suggests that the evolutionary history of these viruses extends to divergence events between algae and land plants. Seven Ostreobium sp-associated viruses exhibited sequence similarity to the mitoviruses most commonly found in fungi, compatible with horizontal virus transfer between algae and fungi. We also document, for the first time, RNA viruses associated with chlorarachniophytes, including the first negative-sense (bunya-like) RNA virus in microalgae, as well as a distant homolog of the plant virus Virgaviridae, potentially signifying viral inheritance from the secondary chloroplast endosymbiosis that marked the origin of the chlorarachniophytes. More broadly, these data suggest that the scarcity of RNA viruses in algae results from limited investigation rather than their absence.