School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    Discovery of metabolic resistance to neonicotinoids in green peach aphids (Myzus persicae) in Australia
    de Little, SC ; Edwards, O ; van Rooyen, AR ; Weeks, A ; Umina, PA (WILEY, 2017-08)
  • Item
    Thumbnail Image
    Novel microsatellite markers suggest the mechanism of parthenogenesis in Extatosoma tiaratum is automixis with terminal fusion
    Alavi, Y ; van Rooyen, A ; Elgar, MA ; Jones, TM ; Weeks, AR (Wiley, 2018-02-01)
    Parthenogenetic reproduction is taxonomically widespread and occurs through various cytological mechanisms, which have different impact on the genetic variation of the offspring. Extatosoma tiaratum is a facultatively parthenogenetic Australian insect (Phasmatodea), in which females oviposit continuously throughout their adult lifespan irrespective of mating. Fertilized eggs produce sons and daughters through sexual reproduction and unfertilized eggs produce female offspring via parthenogenesis. Here, we developed novel microsatellite markers for E. tiaratum and characterized them by genotyping individuals from a natural population. We then used the microsatellite markers to infer the cytological mechanism of parthenogenesis in this species. We found evidence suggesting parthenogenesis in E. tiaratum occurs through automixis with terminal fusion, resulting in substantial loss of microsatellite heterozygosity in the offspring. Loss of microsatellite heterozygosity may be associated with loss of heterozygosity in fitness related loci. The mechanism of parthenogenetic reproduction can therefore affect fitness outcomes and needs to be considered when comparing costs and benefits of sex versus parthenogenesis.
  • Item
    Thumbnail Image
    Contrasting patterns of population connectivity between regions in a commercially important mollusc Haliotis rubra: integrating population genetics, genomics and marine LiDAR data
    Miller, AD ; van Rooyen, A ; Rasic, G ; Ierodiaconou, DA ; Gorfine, HK ; Day, R ; Wong, C ; Hoffmann, AA ; Weeks, AR (WILEY, 2016-08)
    Estimating contemporary genetic structure and population connectivity in marine species is challenging, often compromised by genetic markers that lack adequate sensitivity, and unstructured sampling regimes. We show how these limitations can be overcome via the integration of modern genotyping methods and sampling designs guided by LiDAR and SONAR data sets. Here we explore patterns of gene flow and local genetic structure in a commercially harvested abalone species (Haliotis rubra) from southeastern Australia, where the viability of fishing stocks is believed to be dictated by recruitment from local sources. Using a panel of microsatellite and genomewide SNP markers, we compare allele frequencies across a replicated hierarchical sampling area guided by bathymetric LiDAR imagery. Results indicate high levels of gene flow and no significant genetic structure within or between benthic reef habitats across 1400 km of coastline. These findings differ to those reported for other regions of the fishery indicating that larval supply is likely to be spatially variable, with implications for management and long-term recovery from stock depletion. The study highlights the utility of suitably designed genetic markers and spatially informed sampling strategies for gaining insights into recruitment patterns in benthic marine species, assisting in conservation planning and sustainable management of fisheries.
  • Item
    Thumbnail Image
    Incursion pathways of theAsiantiger mosquito (Aedes albopictus) intoAustraliacontrast sharply with those of the yellow fever mosquito (Aedes aegypti)
    Schmidt, TL ; Chung, J ; van Rooyen, AR ; Sly, A ; Weeks, AR ; Hoffmann, AA (JOHN WILEY & SONS LTD, 2020-12)
  • Item
    Thumbnail Image
    Heterogeneous genetic invasions of three insecticide resistance mutations in Indo-Pacific populations of Aedes aegypti (L.)
    Endersby-Harshman, NM ; Schmidt, TL ; Chung, J ; van Rooyen, A ; Weeks, AR ; Hoffmann, AA (WILEY, 2020-05)
    Nations throughout the Indo-Pacific region use pyrethroid insecticides to control Aedes aegypti, the mosquito vector of dengue, often without knowledge of pyrethroid resistance status of the pest or origin of resistance. Two mutations (V1016G + F1534C) in the sodium channel gene (Vssc) of Ae. aegypti modify ion channel function and cause target-site resistance to pyrethroid insecticides, with a third mutation (S989P) having a potential additive effect. Of 27 possible genotypes involving these mutations, some allelic combinations are never seen whereas others predominate. Here, five allelic combinations common in Ae. aegypti from the Indo-Pacific region are described and their geographical distributions investigated using genome-wide SNP markers. We tested the hypothesis that resistance allele combinations evolved de novo in populations versus the alternative that dispersal of Ae. aegypti between populations facilitated genetic invasions of allele combinations. We used latent factor mixed-models to detect SNPs throughout the genome that showed structuring in line with resistance allele combinations and compared variation at SNPs within the Vssc gene with genome-wide variation. Mixed-models detected an array of SNPs linked to resistance allele combinations, all located within or in close proximity to the Vssc gene. Variation at SNPs within the Vssc gene was structured by resistance profile, whereas genome-wide SNPs were structured by population. These results demonstrate that alleles near to resistance mutations have been transferred between populations via linked selection. This indicates that genetic invasions have contributed to the widespread occurrence of Vssc allele combinations in Ae. aegypti in the Indo-Pacific region, pointing to undocumented mosquito invasions between countries.
  • Item
    Thumbnail Image
    Genetic rescue increases fitness and aids rapid recovery of an endangered marsupial population
    Weeks, AR ; Heinze, D ; Perrin, L ; Stoklosa, J ; Hoffmann, AA ; van Rooyen, A ; Kelly, T ; Mansergh, I (NATURE PORTFOLIO, 2017-10-20)
    Genetic rescue has now been attempted in several threatened species, but the contribution of genetics per se to any increase in population health can be hard to identify. Rescue is expected to be particularly useful when individuals are introduced into small isolated populations with low levels of genetic variation. Here we consider such a situation by documenting genetic rescue in the mountain pygmy possum, Burramys parvus. Rapid population recovery occurred in the target population after the introduction of a small number of males from a large genetically diverged population. Initial hybrid fitness was more than two-fold higher than non-hybrids; hybrid animals had a larger body size, and female hybrids produced more pouch young and lived longer. Genetic rescue likely contributed to the largest population size ever being recorded at this site. These data point to genetic rescue as being a potentially useful option for the recovery of small threatened populations.
  • Item
    Thumbnail Image
    Tracking genetic invasions: Genome-wide single nucleotide polymorphisms reveal the source of pyrethroid-resistant Aedes aegypti (yellow fever mosquito) incursions at international ports
    Schmidt, TL ; van Rooyen, AR ; Chung, J ; Endersby-Harshman, NM ; Griffin, PC ; Sly, A ; Hoffmann, AA ; Weeks, AR (WILEY, 2019-06)
    Biological invasions are increasing globally in number and extent despite efforts to restrict their spread. Knowledge of incursion pathways is necessary to prevent new invasions and to design effective biosecurity protocols at source and recipient locations. This study uses genome-wide single nucleotide polymorphisms (SNPs) to determine the origin of 115 incursive Aedes aegypti(yellow fever mosquito) detected at international ports in Australia and New Zealand. We also genotyped mosquitoes at three point mutations in the voltage-sensitive sodium channel (Vssc) gene: V1016G, F1534C and S989P. These mutations confer knockdown resistance to synthetic pyrethroid insecticides, widely used for controlling invertebrate pests. We first delineated reference populations using Ae. aegypti sampled from 15 locations in Asia, South America, Australia and the Pacific Islands. Incursives were assigned to these populations using discriminant analysis of principal components (DAPC) and an assignment test with a support vector machine predictive model. Bali, Indonesia, was the most common origin of Ae. aegypti detected in Australia, while Ae. aegypti detected in New Zealand originated from Pacific Islands such as Fiji. Most incursives had the same allelic genotype across the three Vsscgene point mutations, which confers strong resistance to synthetic pyrethroids, the only insecticide class used in current, widely implemented aircraft disinsection protocols endorsed by the World Health Organization (WHO). Additionally, all internationally assigned Ae. aegypti had Vssc point mutations linked to pyrethroid resistance that are not found in Australian populations. These findings demonstrate that protocols for preventing introductions of invertebrates must consider insecticide resistance, and highlight the usefulness of genomic data sets for managing global biosecurity objectives.
  • Item
    Thumbnail Image
    Dealing with false-positive and false-negative errors about species occurrence at multiple levels
    Guillera-Arroita, G ; Lahoz-Monfort, JJ ; van Rooyen, AR ; Weeks, AR ; Tingley, R ; McCrea, R (Wiley, 2017-09-01)
    Summary 1. Accurate knowledge of species occurrence is fundamental to a wide variety of ecological, evolutionary and conservation applications. Assessing the presence or absence of species at sites is often complicated by imperfect detection, with different mechanisms potentially contributing to false‐negative and/or false‐positive errors at different sampling stages. Ambiguities in the data mean that estimation of relevant parameters might be confounded unless additional information is available to resolve those uncertainties. 2. Here, we consider the analysis of species detection data with false‐positive and false‐negative errors at multiple levels. We develop and examine a two‐stage occupancy‐detection model for this purpose. We use profile likelihoods for identifiability analysis and estimation, and study the types of additional data required for reliable estimation. We test the model with simulated data, and then analyse data from environmental DNA (eDNA) surveys of four Australian frog species. In our case study, we consider that false positives may arise due to contamination at the water sample and quantitative PCR‐sample levels, whereas false negatives may arise due to eDNA not being captured in a field sample, or due to the sensitivity of laboratory tests. We augment our eDNA survey data with data from aural surveys and laboratory calibration experiments. 3. We demonstrate that the two‐stage model with false‐positive and false‐negative errors is not identifiable if only survey data prone to false positives are available. At least two sources of extra information are required for reliable estimation (e.g. records from a survey method with unambiguous detections, and a calibration experiment). Alternatively, identifiability can be achieved by setting plausible bounds on false detection rates as prior information in a Bayesian setting. The results of our case study matched our simulations with respect to data requirements, and revealed false‐positive rates greater than zero for all species. 4. We provide statistical modelling tools to account for uncertainties in species occurrence survey data when false negatives and false positives could occur at multiple sampling stages. Such data are often needed to support management and policy decisions. Dealing with these uncertainties is relevant for traditional survey methods, but also for promising new techniques, such as eDNA sampling.
  • Item
    Thumbnail Image
    Assessing the cost-efficiency of environmental DNA sampling
    Smart, AS ; Weeks, AR ; van Rooyen, AR ; Moore, A ; McCarthy, MA ; Tingley, R ; Yoccoz, N (WILEY, 2016-11)
    Summary Environmental DNA (eDNA) sampling can be a highly sensitive method for detecting aquatic taxa; however, the cost‐efficiency of this technique relative to traditional methods has not been rigorously assessed. We show how methods that account for imperfect and stochastic detection can be used to (i) determine the optimal allocation of survey effort with eDNA sampling for a fixed budget (i.e. identify the optimal combination of water samples vs. site visits), and (ii) assess the cost‐efficiency of eDNA sampling relative to traditional survey techniques. We illustrate this approach by comparing eDNA sampling and bottle‐trapping for an exotic newt species (Lissotriton v. vulgaris) recently detected in Melbourne, Australia. Bottle traps produced much lower detection rates than eDNA sampling, but the cost‐efficiency of the two methods can be similar because bottle‐trapping is cheaper per sample. The relative cost‐efficiency of the two sampling methods was sensitive to the available survey budget, the costs of eDNA primer/probe development and sample processing and the number of positive quantitative PCR assays (qPCRs) used to designate a water sample as positive for newt DNA. Environmental DNA sampling was more cost‐efficient than bottle‐trapping for small to intermediate budgets when primer/probe development and sample processing costs were low, and 1/4 or 2/4 positive qPCRs were used to label a water sample as positive for newt eDNA. However, bottle traps were generally more cost‐efficient than eDNA sampling when primer/probe development and sample processing costs were high, regardless of qPCR threshold or survey budget. Traditional sampling methods may achieve lower detection probabilities compared to eDNA sampling, but the totality of costs can make eDNA sampling less efficient than traditional techniques in some circumstances. Our approach provides a quantitative framework for determining how many water samples and site visits are required to maximize detection probabilities with eDNA sampling, and can calculate the cost‐efficiency of any sampling method.