School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 43
  • Item
    Thumbnail Image
    Separating Golgi Proteins from Cis to Trans Reveals Underlying Properties of Cisternal Localization.
    Parsons, HT ; Stevens, TJ ; McFarlane, HE ; Vidal-Melgosa, S ; Griss, J ; Lawrence, N ; Butler, R ; Sousa, MML ; Salemi, M ; Willats, WGT ; Petzold, CJ ; Heazlewood, JL ; Lilley, KS (Oxford University Press on behalf of American Society of Plant Physiologists, 2019-07-02)
    The order of enzymatic activity across Golgi cisternae is essential for complex molecule biosynthesis. However, an inability to separate Golgi cisternae has meant that the cisternal distribution of most resident proteins, and their underlying localization mechanisms, are unknown. Here, we exploit differences in surface charge of intact cisternae to perform separation of early to late Golgi subcompartments. We determine protein and glycan abundance profiles across the Golgi; over 390 resident proteins are identified, including 136 new additions, with over 180 cisternal assignments. These assignments provide a means to better understand the functional roles of Golgi proteins and how they operate sequentially. Protein and glycan distributions are validated in vivo using high-resolution microscopy. Results reveal distinct functional compartmentalization among resident Golgi proteins. Analysis of transmembrane proteins shows several sequence-based characteristics relating to pI, hydrophobicity, Ser abundance, and Phe bilayer asymmetry that change across the Golgi. Overall, our results suggest that a continuum of transmembrane features, rather than discrete rules, guide proteins to earlier or later locations within the Golgi stack.
  • Item
    Thumbnail Image
    Profiling Cell Wall Monosaccharides and Nucleotide-Sugars from Plants.
    Rautengarten, C ; Heazlewood, JL ; Ebert, B (Wiley-Blackwell, 2019-06)
    The cell wall is an intricate mesh largely composed of polysaccharides that vary in structure and abundance. Apart from cellulose biosynthesis, the assembly of matrix polysaccharides such as pectin and hemicellulose occur in the Golgi apparatus before being transported via vesicles to the cell wall. Matrix polysaccharides are biosynthesized from activated precursors or nucleotide sugars. The composition and assembly of the cell wall is an important aspect in plant development and plant biomass utilization. The application of anion-exchange chromatography to determine the monosaccharide composition of the insoluble matrix polysaccharides enables a complete profile of all major sugars in the cell wall from a single run. While porous carbon graphite chromatography and tandem mass spectrometry delivers a sensitive and robust nucleotide sugar profile from plant extracts. Here we describe detailed methodology to quantify nucleotide sugars within the cell and profile the non-cellulosic monosaccharide composition of the cell wall.
  • Item
    No Preview Available
    The Green proteome: challenges in plant proteomics
    Heazlewood, JL (FRONTIERS RESEARCH FOUNDATION, 2011)
  • Item
    No Preview Available
    An Integrative Approach to the Identification of Arabidopsis and Rice Genes Involved in Xylan and Secondary Wall Development
    Oikawa, A ; Joshi, HJ ; Rennie, EA ; Ebert, B ; Manisseri, C ; Heazlewood, JL ; Scheller, HV ; Hazen, SP (PUBLIC LIBRARY SCIENCE, 2010-11-23)
    Xylans constitute the major non-cellulosic component of plant biomass. Xylan biosynthesis is particularly pronounced in cells with secondary walls, implying that the synthesis network consists of a set of highly expressed genes in such cells. To improve the understanding of xylan biosynthesis, we performed a comparative analysis of co-expression networks between Arabidopsis and rice as reference species with different wall types. Many co-expressed genes were represented by orthologs in both species, which implies common biological features, while some gene families were only found in one of the species, and therefore likely to be related to differences in their cell walls. To predict the subcellular location of the identified proteins, we developed a new method, PFANTOM (plant protein family information-based predictor for endomembrane), which was shown to perform better for proteins in the endomembrane system than other available prediction methods. Based on the combined approach of co-expression and predicted cellular localization, we propose a model for Arabidopsis and rice xylan synthesis in the Golgi apparatus and signaling from plasma membrane to nucleus for secondary cell wall differentiation. As an experimental validation of the model, we show that an Arabidopsis mutant in the PGSIP1 gene encoding one of the Golgi localized candidate proteins has a highly decreased content of glucuronic acid in secondary cell walls and substantially reduced xylan glucuronosyltransferase activity.
  • Item
    No Preview Available
    Golgi Enrichment and Proteomic Analysis of Developing Pinus radiata Xylem by Free-Flow Electrophoresis
    Parsons, HT ; Weinberg, CS ; Macdonald, LJ ; Adams, PD ; Petzold, CJ ; Strabala, TJ ; Wagner, A ; Heazlewood, JL ; Subramanyam, R (PUBLIC LIBRARY SCIENCE, 2013-12-26)
    Our understanding of the contribution of Golgi proteins to cell wall and wood formation in any woody plant species is limited. Currently, little Golgi proteomics data exists for wood-forming tissues. In this study, we attempted to address this issue by generating and analyzing Golgi-enriched membrane preparations from developing xylem of compression wood from the conifer Pinus radiata. Developing xylem samples from 3-year-old pine trees were harvested for this purpose at a time of active growth and subjected to a combination of density centrifugation followed by free flow electrophoresis, a surface charge separation technique used in the enrichment of Golgi membranes. This combination of techniques was successful in achieving an approximately 200-fold increase in the activity of the Golgi marker galactan synthase and represents a significant improvement for proteomic analyses of the Golgi from conifers. A total of thirty known Golgi proteins were identified by mass spectrometry including glycosyltransferases from gene families involved in glucomannan and glucuronoxylan biosynthesis. The free flow electrophoresis fractions of enriched Golgi were highly abundant in structural proteins (actin and tubulin) indicating a role for the cytoskeleton during compression wood formation. The mass spectrometry proteomics data associated with this study have been deposited to the ProteomeXchange with identifier PXD000557.
  • Item
    No Preview Available
    Transgenic Expression of the Dicotyledonous Pattern Recognition Receptor EFR in Rice Leads to Ligand-Dependent Activation of Defense Responses
    Schwessinger, B ; Bahar, O ; Thomas, N ; Holton, N ; Nekrasov, V ; Ruan, D ; Canlas, PE ; Daudi, A ; Petzold, CJ ; Singan, VR ; Kuo, R ; Chovatia, M ; Daum, C ; Heazlewood, JL ; Zipfel, C ; Ronald, PC ; Ma, W (PUBLIC LIBRARY SCIENCE, 2015-03)
    Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components.
  • Item
    Thumbnail Image
    PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update
    Durek, P ; Schmidt, R ; Heazlewood, JL ; Jones, A ; MacLean, D ; Nagel, A ; Kersten, B ; Schulze, WX (OXFORD UNIV PRESS, 2010-01)
    The PhosPhAt database of Arabidopsis phosphorylation sites was initially launched in August 2007. Since then, along with 10-fold increase in database entries, functionality of PhosPhAt (phosphat.mpimp-golm.mpg.de) has been considerably upgraded and re-designed. PhosPhAt is now more of a web application with the inclusion of advanced search functions allowing combinatorial searches by Boolean terms. The results output now includes interactive visualization of annotated fragmentation spectra and the ability to export spectra and peptide sequences as text files for use in other applications. We have also implemented dynamic links to other web resources thus augmenting PhosPhAt-specific information with external protein-related data. For experimental phosphorylation sites with information about dynamic behavior in response to external stimuli, we display simple time-resolved diagrams. We have included predictions for pT and pY sites and updated pS predictions. Access to prediction algorithm now allows 'on-the-fly' prediction of phosphorylation of any user-uploaded protein sequence. Protein Pfam domain structures are now mapped onto the protein sequence display next to experimental and predicted phosphorylation sites. Finally, we have implemented functional annotation of proteins using MAPMAN ontology. These new developments make the PhosPhAt resource a useful and powerful tool for the scientific community as a whole beyond the plant sciences.
  • Item
    Thumbnail Image
    The Arabidopsis cytosolic proteome: the metabolic heart of the cell
    Ito, J ; Parsons, HT ; Heazlewood, JL (FRONTIERS MEDIA SA, 2014-02-05)
    The plant cytosol is the major intracellular fluid that acts as the medium for inter-organellar crosstalk and where a plethora of important biological reactions take place. These include its involvement in protein synthesis and degradation, stress response signaling, carbon metabolism, biosynthesis of secondary metabolites, and accumulation of enzymes for defense and detoxification. This central role is highlighted by estimates indicating that the majority of eukaryotic proteins are cytosolic. Arabidopsis thaliana has been the subject of numerous proteomic studies on its different subcellular compartments. However, a detailed study of enriched cytosolic fractions from Arabidopsis cell culture has been performed only recently, with over 1,000 proteins reproducibly identified by mass spectrometry. The number of proteins allocated to the cytosol nearly doubles to 1,802 if a series of targeted proteomic characterizations of complexes is included. Despite this, few groups are currently applying advanced proteomic approaches to this important metabolic space. This review will highlight the current state of the Arabidopsis cytosolic proteome since its initial characterization a few years ago.
  • Item
    Thumbnail Image
    An XA21-Associated Kinase (OsSERK2) Regulates Immunity Mediated by the XA21 and XA3 Immune Receptors
    Chen, X ; Zuo, S ; Schwessinger, B ; Chern, M ; Canlas, PE ; Ruan, D ; Zhou, X ; Wang, J ; Daudi, A ; Petzold, CJ ; Heazlewood, JL ; Ronald, PC (CELL PRESS, 2014-05)
    The rice XA21 immune receptor kinase and the structurally related XA3 receptor confer immunity to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight. Here we report the isolation of OsSERK2 (rice somatic embryogenesis receptor kinase 2) and demonstrate that OsSERK2 positively regulates immunity mediated by XA21 and XA3 as well as the rice immune receptor FLS2 (OsFLS2). Rice plants silenced for OsSerk2 display altered morphology and reduced sensitivity to the hormone brassinolide. OsSERK2 interacts with the intracellular domains of each immune receptor in the yeast two-hybrid system in a kinase activity-dependent manner. OsSERK2 undergoes bidirectional transphosphorylation with XA21 in vitro and forms a constitutive complex with XA21 in vivo. These results demonstrate an essential role for OsSERK2 in the function of three rice immune receptors and suggest that direct interaction with the rice immune receptors is critical for their function. Taken together, our findings suggest that the mechanism of OsSERK2-meditated regulation of rice XA21, XA3, and FLS2 differs from that of AtSERK3/BAK1-mediated regulation of Arabidopsis FLS2 and EFR.
  • Item
    Thumbnail Image
    MASCP gator: an overview of the Arabidopsis proteomic aggregation portal
    Mann, GW ; Calley, PC ; Joshi, HJ ; Heazlewood, JL (FRONTIERS MEDIA SA, 2013-10-23)
    A key challenge in the area of bioinformatics in the coming decades is the ability to manage the wealth of information that is being generated from the variety of high throughput methodologies currently being undertaken in laboratories across the world. While these approaches have made available large volumes of data to the research community, less attention has been given to the problem of how to intuitively present the data to enable greater biological insights. Recently, an attempt was made to tackle this problem in the area of Arabidopsis proteomics. The model plant has been the target of countless proteomics surveys producing an exhaustive array of data and online repositories. The MASCP Gator is an aggregation portal for proteomic data currently being produced by the community and unites a large collection of specialized resources to a single portal (http://gator.masc-proteomics.org/). Here we describe the latest additions, upgrades and features to this resource further expanding its role into protein modifications and genome sequence variations.