School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    Thumbnail Image
    Using decision support tools in emergency animal disease planning and response: Foot and mouth disease (CEBRA Project 1404D), Technical Report prepared for the Department of Agriculture and Water Resources
    Garner, G ; East, I ; Bradhurst, R ; Roche, S ; Rawdon, T ; Sanson, R ; Kompas, T ; Van Pham, H ; Stevenson, M (University of Melbourne, 2016)
    Modelling studies both in Australia and overseas have shown that vaccination can be very effective in reducing the size and duration of an FMD outbreak. Vaccination is most effective in reducing the duration and size of an outbreak when used early and is less effective the longer you delay. However, a decision to vaccinate early in the outbreak may result in using vaccination in situations where it is not actually required, with consequent implications for post-outbreak surveillance, the management of vaccinated animals and the ability to regain FMD-free status and access to markets. Overall, the choice of control measure to adopt in an FMD outbreak will thus depend on the variable and potentially conflicting objectives of the control program. As an important component of disease planning and preparedness for the department, the project will report on key information that could be used in an FMD outbreak to infer the potential scale of an outbreak and information to support disease management decision-making.
  • Item
    Thumbnail Image
    Incorporating economic components in Australia's FMD modelling capability and evaluating post-outbreak management to support return to trade (CEBRA project 1608D), Technical Report for the Department of Agriculture, Water and Environment
    Garner, G ; Bradhurst, R ; Death, C ; Dodd, A ; East, I ; Kompas, T (University of Melbourne, 2017)
    Following an outbreak of FMD, surveillance will be required to demonstrate that infection has been eradicated from the population and enable any remaining movement restrictions to be lifted within the country. Proof of freedom will also be needed to satisfy trading partners and regain access to international markets. Although vaccination is increasingly being recognised as an important tool to assist in containing and eradicating FMD outbreaks, it will make achieving recognition of free status more difficult—keeping vaccinated animals in the population will delay the period until FMD-free status is regained under the World Organisation for Animal Health (OIE) guidelines and add additional complications to the postoutbreak surveillance program. There is no agreed approach to post-outbreak management of vaccinated animals in AUSVETPLAN with the options being to: (1) allow vaccinated animals to remain in the population to live out their normal commercial lives (vaccinate-to-live); (2) remove all vaccinated animals from the population (vaccinateand- remove). Under option 2, vaccinated animals could be subject to (a) slaughter to waste i.e. remove and dispose of vaccinated animals; or (b) slaughter and salvage i.e. attempt to sell either raw or processed product from vaccinated animals. For (b) there may be some residual value of products that could offset some of the costs. The project will bring together epidemiological and economic expertise from the Department, the Australian National University, and CEBRA to formally explore and establish a science-based and cost effective approach to regaining free-status after an FMD outbreak as expeditiously as possible. The project will expand the Department’s modelling capability as well as providing insights into postoutbreak FMD management and contribute to Australia’s FMD preparedness.
  • Item
    Thumbnail Image
    National-level farm demographic data for preparedness of highly-infectious livestock disease epidemics. Review of data sources in New Zealand, approach to modelling populations and the effect of population uncertainty on disease modelling.
    van Andel, M ; Hollings, T ; Robinson, A ; Jewell, C ; Burgman, M ; Vink, D ; Sattler, K ; Masako, W ; Carpenter, T ; Bradhurst, R ; Garner, G (University of Melbourne, 2016)
    Isolation and strict biosecurity measures implemented by Australia and New Zealand have prevented the incursion of many organisms of biosecurity concern. The agricultural industry is a key part of the economy for both countries, and preventing the arrival of diseases of concern, including foot-and-mouth (FMD) disease, is crucial to maintaining access to international markets, reputation, and protecting the economy and industry. Early detection of, and a rapid, effective response to such diseases have a large impact on limiting the economic damage caused by epidemics. An acknowledged weakness of biosecurity preparedness and response to agricultural diseases in both countries is the lack of a single source of accurate, up-to-date farm livestock demographics information. This report reviews the use of animal counts for investigation of, preparedness for and response to exotic animal disease outbreaks, and analyses the available New Zealand datasets in depth. Gaps and weaknesses in the current data landscape are documented. The project objectives then focus on developing methodologies to estimate national-level farm demographic data and assess the use of modelled and inaccurate data in disease simulation models. There are nine key deliverables outlined in the report which were carried out over the two year duration of the project.
  • Item
    Thumbnail Image
    Cost-benefit analysis of the yellow crazy ant eradication program. Technical Report prepared for the Wet Tropics Management Authority
    Spring, D ; Kompas, T ; Bradhurst, R (Centre of Excellence for Biosecurity Risk Analysis, 2019)
    Yellow crazy ants (Anoplolepis gracilipes) (YCA) are one of the world’s 100 worst invasive species (Lowe et al. 2000). Previous assessments of YCA invasions have demonstrated that YCA can dramatically reduce native species richness in invaded areas, including in the Seychelles (Bos et al. 2008), Christmas Island (O'Dowd et al. 2003), and Hawaii (Plentovich et al. 2011). Native species losses include direct losses of competing invertebrate species and indirect losses resulting from ecological interdependencies, which can result in “ecological meltdown” in extreme cases such as Christmas Island (O'Dowd et al. 2003). YCA can also cause large losses to people living in infested areas through nuisance and health effects (Lach and Hoskin 2015) and can also adversely affect agricultural producers (Young et al. 2001) through reducing yields and/or increasing pesticide costs. YCA was first detected in Cairns and its southern suburbs in 2001, and an eradication program was initiated by the Department of Natural Resources and Mines (DNRM) and Biosecurity Queensland as part of a larger state-wide program. Later discoveries of YCA across the state, including in and around the WTWHA led to the state-wide eradication program being discontinued. An application was then made by WTMA to continue eradication efforts in and around the WTWHA. The program has been funded by the Australian Government and the Queensland Government in two overlapping projects, as described in the Executive Summary.
  • Item
    Thumbnail Image
    Vector-borne spread of Animal Disease (CEBRA Project 1608B). Technical Report for the Department of Agriculture, Water and Environment
    Bradhurst, R ; Garner, G ; East, I ; Iglesias, R ; Stevenson, M ; AL-RIYAMI, S ; Kompas, T (University of Melbourne, 2018)
  • Item
    No Preview Available
    Control and monitoring of kangaroo populations in the Mallee Parks of semi-arid Northwest Victoria
    Morris, WK ; Duncan, DH ; Vesk, PA (Parks Victoria and NESP Threatened Species Recovery Hub, 2019)
  • Item
    Thumbnail Image
    The Little Things that Run the City: How do Melbourne’s green spaces support insect biodiversity and ecosystem health?
    MATA, L ; IVES, C ; GARRARD, G ; GORDON, A ; BACKSTROM, A ; Cranney, K ; Smith, T ; Stark, L ; Bickel, D ; Cunningham, S ; HOCHULI, D ; Malipatil, M ; MOIR, M ; Plein, M ; Porch, N ; Semeraro, L ; Standish, R ; WALKER, K ; Vesk, P ; Parris, K ; BEKESSY, S ; Hahs, A ( 2015)
  • Item
    No Preview Available
    Part III. Karyosystematics of selected Chironominae of New Mexico
    Martin, J ; Sublette, JE ; Sublette, M (New Mexico Energy Institute, New Mexico State University, 1979)
    Karyotypes are described for Chironomus decorum group species 3a, Chironomus utahensis, Chironomus stigmaterus, Stictochironomus new species 1, Stictochironomus new species 2, Stictochironomus marmoreus, Tanytarsus new species 8, Dicrotendipes fumidus, Dicrotendipes neomodestus, Dicrotendipes californicus and Phaenopsectra new species 1. The Chjironomus decorum group offers great promise in water quality assessment through analyses of chromosomal rearrangements and inversion frequencies as related to water quality parameters.
  • Item
    Thumbnail Image
    Commonwealth Environmental Water Office Long Term Intervention Monitoring Project Goulburn River Selected Area evaluation report 2014-15
    WEBB, J ; Casanelia, S ; Earl, G ; Grace, M ; King, E ; Koster, W ; Morris, K ; Pettigrove, V ; Sharpe, A ; Townsend, K ; Vietz, G ; Woodman, A ; Ziebell, A (Victoria University of Wellington. Stout Research Centre, 2016)
  • Item
    Thumbnail Image
    Bubbles: The Nutrient, Phytoplankton, Zooplankton and Fish Recruitment (NPZ-F) Numerical Model
    Black, K ; Longmore, A ; Hamer, P ; Lee, R ; Swearer, S ; JENKINS, G (University of Melbourne and Sanctuary Beach Pte Ltd, 2015)