School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    No Preview Available
    Post-outbreak surveillance strategies to support proof of freedom from foot-and-mouth disease
    Bradhurst, R ; Garner, G ; East, I ; Death, C ; Dodd, A ; Kompas, T ( 2021-04-28)
    Abstract Whilst emergency vaccination may help contain foot-and-mouth disease in a previously FMD-free country, its use complicates post-outbreak surveillance and the recovery of FMD-free status. A structured surveillance program is required that can distinguish between vaccinated and residually infected animals, and provide statistical confidence that the virus is no longer circulating in previously infected areas. Epidemiological models have been well-used to investigate the potential benefits of emergency vaccination during a control progam and when/where/whom to vaccinate in the face of finite supplies of vaccine and personnel. Less well studied are post-outbreak issues such as the management of vaccinated animals and the implications of having used vaccination during surveillance regimes to support proof-of-freedom. This paper presents enhancements to the Australian Animal Disease Model (AADIS) that allow comparisons of different post-outbreak surveillance sampling regimes for establishing proof-of-freedom from FMD. A case study is provided that compares a baseline surveillance sampling regime (derived from current OIE guidelines), with an alternative less intensive sampling regime. It was found that when vaccination was not part of the control program, a reduced sampling intensity significantly reduced the number of samples collected and the cost of the post-outbreak surveillance program, without increasing the risk of missing residual infected herds.
  • Item
  • Item
    Thumbnail Image
    A generalised and scalable framework for modelling incursions, surveillance and control of plant and environmental pests
    Bradhurst, R ; Spring, D ; Stanaway, M ; Milner, J ; Kompas, T (Elsevier BV, 2021-05)
    Invasive plant and environmental pests can seriously impact environment, economy, health and amenity. It is challenging to form response policies given the diversity of pest species; complex spatiotemporal interplay between arrival, spread, surveillance, and control; and limited field data when pests are rare/absent. Models can provide useful decision support through the exploration of incursion pathways and comparison of surveillance and control strategies. However, increased use of quantitative models to inform pest management requires adaptable modelling frameworks. The new Australian Priority Pest and Disease modelling framework (APPDIS) allows pest models to be constructed through user configuration choices for a broad range of different pest types. Pest populations may be defined as point incursions, established populations, or estimated mechanistically from environmental criteria. Spread occurs at multiple scales, through either simple mathematical kernels, or more complex spatial pathways, depending on data availability and pest type. Useful experiments can be conducted on general surveillance, specific surveillance, and treatment regimes. Control activities are dynamically resource-constrained and costed for relative comparisons in terms of benefit and cost. A case study on a tramp ant incursion is provided for illustrative purposes.