School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 2524
  • Item
    Thumbnail Image
    PI3K Activation in Neural Stem Cells Drives Tumorigenesis which can be Ameliorated by Targeting the cAMP Response Element Binding (CREB) Protein
    Daniel, PM ; Filiz, G ; Brown, DV ; Christie, M ; Waring, PM ; Zhang, Y ; Haynes, JM ; Pouton, C ; Flanagan, D ; Vincan, E ; Johns, TG ; Montgomery, K ; Phillips, WA ; Mantamadiotis, T (Oxford University Press, 2018-10)
    BACKGROUND: Hyperactivation of phosphoinositide 3-kinase (PI3K) signaling is common in cancers, but the precise role of the pathway in glioma biology remains to be determined. Some understanding of PI3K signaling mechanisms in brain cancer comes from studies on neural stem/progenitor cells (NSPCs), where signals transmitted via the PI3K pathway cooperate with other intracellular pathways and downstream transcription factors to regulate critical cell functions. METHODS: To investigate the role of the PI3K pathway in glioma initiation and development, we generated a mouse model targeting the inducible expression of a PIK3CAH1047A oncogenic mutant and deletion of the PI3K negative regulator, phosphatase and tensin homolog (PTEN), to NSPCs. RESULTS: Expression of a Pik3caH1047A was sufficient to generate tumors with oligodendroglial features, but simultaneous loss of PTEN was required for the development of invasive, high-grade glioma. Pik3caH1047A-PTEN mutant NSPCs exhibited enhanced neurosphere formation which correlated with increased Wnt signaling, while loss of cAMP response element binding protein (CREB) in Pik3caH1047A-Pten mutant tumors led to longer symptom-free survival in mice. CONCLUSION: Taken together, our findings present a novel mouse model for glioma demonstrating that the PI3K pathway is important for initiation of tumorigenesis and that disruption of downstream CREB signaling attenuates tumor expansion.
  • Item
    Thumbnail Image
    Investigating Neural Stem Cell and Glioma Stem Cell Self-renewal Potential Using Extreme Limiting Dilution Analysis (ELDA)
    Nguyen, HPT ; Daniel, PM ; Filiz, G ; Mantamadiotis, T (BIO-PROTOCOL, 2018-09-05)
    Glioma stem cells (GSC) grown as neurospheres exhibit similar characteristics to neural stem cells (NSC) grown as neurospheres, including the ability to self-renew and differentiate. GSCs are thought to play a role in cancer initiation and progression. Self-renewal potential of GSCs is thought to reflect many characteristics associated with malignancy, including tumor recurrence following cytotoxic therapy due to their proliferative dormancy and capacity to allow for the development of resistant tumor cell sub-clones due to mutations acquired during their differentiation. Here, we demonstrate that using extreme limiting dilution analysis (ELDA), subtle differences in the frequency of sphere-forming potential between PI3K-mutant oncogenic NSCs and non-oncogenic NSCs can be measured, in vitro. We further show how ELDA can be used on cells, before and after forced differentiation to amplify inherent differences in sphere-forming potential between mutant and control NSCs. Ultimately, ELDA exploits a difference in the ability of a single or a few seeded stem cells to self-renew, divide and form neurospheres. Importantly, the assay also allows a comparison between genetically distinct cells or between the same cells under different conditions, where the impact of target-specific drugs or other novel cancer stem cell therapies can be tested.
  • Item
    No Preview Available
    HBO1 (KAT7) Does Not Have an Essential Role in Cell Proliferation, DNA Replication, or Histone 4 Acetylation in Human Cells
    Kueh, AJ ; Eccles, S ; Tang, L ; Garnham, AL ; May, RE ; Herold, MJ ; Smyth, GK ; Voss, AK ; Thomas, T (American Society for Microbiology, 2020-02-01)
    HBO1 (MYST2/KAT7) is essential for histone 3 lysine 14 acetylation (H3K14ac) but is dispensable for H4 acetylation and DNA replication in mouse tissues. In contrast, previous studies using small interfering RNA (siRNA) knockdown in human cell lines have suggested that HBO1 is essential for DNA replication. To determine if HBO1 has distinctly different roles in immortalized human cell lines and normal mouse cells, we performed siRNA knockdown of HBO1. In addition, we used CRISPR/Cas9 to generate 293T, MCF7, and HeLa cell lines lacking HBO1. Using both techniques, we show that HBO1 is essential for all H3K14ac in human cells and is unlikely to have a direct effect on H4 acetylation and only has minor effects on cell proliferation. Surprisingly, the loss of HBO1 and H3K14ac in HeLa cells led to the secondary loss of almost all H4 acetylation after 4 weeks. Thus, HBO1 is dispensable for DNA replication and cell proliferation in immortalized human cells. However, while cell proliferation proceeded without HBO1 and H3K14ac, HBO1 gene deletion led to profound changes in cell adhesion, particularly in 293T cells. Consistent with this phenotype, the loss of HBO1 in both 293T and HeLa principally affected genes mediating cell adhesion, with comparatively minor effects on other cellular processes.
  • Item
    No Preview Available
    Generation and analysis of Siah2 mutant mice
    Frew, IJ ; Hammond, VE ; Dickins, RA ; Quinn, JMW ; Walkley, CR ; Sims, NA ; Schnall, R ; Della, NG ; Holloway, AJ ; Digby, MR ; Janes, PW ; Tarlinton, DM ; Purton, LE ; Gillespie, MT ; Bowtell, DDL (AMER SOC MICROBIOLOGY, 2003-12)
    Siah proteins function as E3 ubiquitin ligase enzymes to target the degradation of diverse protein substrates. To characterize the physiological roles of Siah2, we have generated and analyzed Siah2 mutant mice. In contrast to Siah1a knockout mice, which are growth retarded and exhibit defects in spermatogenesis, Siah2 mutant mice are fertile and largely phenotypically normal. While previous studies implicate Siah2 in the regulation of TRAF2, Vav1, OBF-1, and DCC, we find that a variety of responses mediated by these proteins are unaffected by loss of Siah2. However, we have identified an expansion of myeloid progenitor cells in the bone marrow of Siah2 mutant mice. Consistent with this, we show that Siah2 mutant bone marrow produces more osteoclasts in vitro than wild-type bone marrow. The observation that combined Siah2 and Siah1a mutation causes embryonic and neonatal lethality demonstrates that the highly homologous Siah proteins have partially overlapping functions in vivo.
  • Item
    Thumbnail Image
    Assessment and management of reproduction in Australian monotremes and marsupials
    Keeley, T ; Johnston, S ; Vogelnest, L ; Portas, T (CSIRO Publishing, 2019)
  • Item
    Thumbnail Image
    Males evolve to be more harmful under increased sexual conflict intensity in a seed beetle
    McNamara, KB ; Sloan, NS ; Kershaw, SE ; Van Lieshout, E ; Simmons, LW ; Smiseth, P (OXFORD UNIV PRESS INC, 2020-01-28)
    One conspicuous manifestation of sexual conflict is traumatic mating, in which male genitalia damage the female during copulation. The penis of the seed beetle, Callosobruchus maculatus, is covered in spines that damage the female reproductive tract. Females kick males ostensibly to shorten these harmful copulations. How these iconic conflict behaviors coevolve in response to sexual conflict intensity can provide insight into the economics of these traits. We examined whether male harm and female resistance coevolved in response to elevated sexual conflict. We quantified copulation behavior and female reproductive tract damage of individuals from replicated populations evolving for 32 generations under low or high sexual conflict (female- and male-biased treatments, respectively). First, we permitted females ad libitum matings with males from either sex-ratio treatment, recording her tract damage and longevity. Second, we performed a full-factorial cross of matings by males and females from each of the replicate populations, recording mating and kicking duration and reproductive output. We found manipulation of sexual conflict intensity led to the evolution of male harmfulness, but not female resistance to harm. We also demonstrate that female kicking does not respond to sexual conflict intensity, suggesting it does not function to mitigate male harm in this species. Our findings demonstrate the complexities of behavioral and morphological coevolutionary responses to sexual conflict intensity in an important model species.
  • Item
    Thumbnail Image
    Socially cued anticipatory adjustment of female signalling effort in a moth
    Pham, HT ; McNamara, KB ; Elgar, MA (The Royal Society Publishing, 2020-12-23)
    Juvenile population density has profound effects on subsequent adult development, morphology and reproductive investment. Yet, little is known about how the juvenile social environment affects adult investment into chemical sexual signalling. Male gumleaf skeletonizer moths, Uraba lugens, facultatively increase investment into antennae (pheromone receiving structures) when reared at low juvenile population densities, but whether there is comparable adjustment by females into pheromone investment is not known. We investigate how juvenile population density influences the ‘calling' (pheromone-releasing) behaviour of females and the attractiveness of their pheromones. Female U. lugens adjust their calling behaviour in response to socio-sexual cues: adult females reared in high juvenile population densities called earlier and for longer than those from low juvenile densities. Juvenile density also affected female pheromonal attractiveness: Y-maze olfactometer assays revealed that males prefer pheromones produced by females reared at high juvenile densities. This strategic investment in calling behaviour by females, based on juvenile cues that anticipate the future socio-sexual environment, likely reflects a response to avoid mating failure through competition with neighbouring signallers.
  • Item
    Thumbnail Image
    Proteomics and Deep Sequencing Comparison of Seasonally Active Venom Glands in the Platypus Reveals Novel Venom Peptides and Distinct Expression Profiles
    Wong, ESW ; Morgenstern, D ; Mofiz, E ; Gombert, S ; Morris, KM ; Temple-Smith, P ; Renfree, MB ; Whittington, CM ; King, GF ; Warren, WC ; Papenfuss, AT ; Belov, K (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2012-11)
    The platypus is a venomous monotreme. Male platypuses possess a spur on their hind legs that is connected to glands in the pelvic region. They produce venom only during the breeding season, presumably to fight off conspecifics. We have taken advantage of this unique seasonal production of venom to compare the transcriptomes of in- and out-of-season venom glands, in conjunction with proteomic analysis, to identify previously undiscovered venom genes. Comparison of the venom glands revealed distinct gene expression profiles that are consistent with changes in venom gland morphology and venom volumes in and out of the breeding season. Venom proteins were identified through shot-gun sequenced venom proteomes of three animals using RNA-seq-derived transcripts for peptide-spectral matching. 5,157 genes were expressed in the venom glands, 1,821 genes were up-regulated in the in-season gland, and 10 proteins were identified in the venom. New classes of platypus-venom proteins identified included antimicrobials, amide oxidase, serpin protease inhibitor, proteins associated with the mammalian stress response pathway, cytokines, and other immune molecules. Five putative toxins have only been identified in platypus venom: growth differentiation factor 15, nucleobindin-2, CD55, a CXC-chemokine, and corticotropin-releasing factor-binding protein. These novel venom proteins have potential biomedical and therapeutic applications and provide insights into venom evolution.
  • Item
    Thumbnail Image
    N-Glycosylation Determines Ionic Permeability and Desensitization of the TRPV1 Capsaicin Receptor
    Veldhuis, NA ; Lew, MJ ; Abogadie, FC ; Poole, DP ; Jennings, EA ; Ivanusic, JJ ; Eilers, H ; Bunnett, NW ; McIntyre, P (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2012-06-22)
    The balance of glycosylation and deglycosylation of ion channels can markedly influence their function and regulation. However, the functional importance of glycosylation of the TRPV1 receptor, a key sensor of pain-sensing nerves, is not well understood, and whether TRPV1 is glycosylated in neurons is unclear. We report that TRPV1 is N-glycosylated and that N-glycosylation is a major determinant of capsaicin-evoked desensitization and ionic permeability. Both N-glycosylated and unglycosylated TRPV1 was detected in extracts of peripheral sensory nerves by Western blotting. TRPV1 expressed in HEK-293 cells exhibited various degrees of glycosylation. A mutant of asparagine 604 (N604T) was not glycosylated but did not alter plasma membrane expression of TRPV1. Capsaicin-evoked increases in intracellular calcium ([Ca(2+)](i)) were sustained in wild-type TRPV1 HEK-293 cells but were rapidly desensitized in N604T TRPV1 cells. There was marked cell-to-cell variability in capsaicin responses and desensitization between individual cells expressing wild-type TRPV1 but highly uniform responses in cells expressing N604T TRPV1, consistent with variable levels of glycosylation of the wild-type channel. These differences were also apparent when wild-type or N604T TRPV1-GFP fusion proteins were expressed in neurons from trpv1(-/-) mice. Capsaicin evoked a marked, concentration-dependent increase in uptake of the large cationic dye YO-PRO-1 in cells expressing wild-type TRPV1, indicative of loss of ion selectivity, that was completely absent in cells expressing N604T TRPV1. Thus, TRPV1 is variably N-glycosylated and glycosylation is a key determinant of capsaicin regulation of TRPV1 desensitization and permeability. Our findings suggest that physiological or pathological alterations in TRPV1 glycosylation would affect TRPV1 function and pain transmission.
  • Item
    Thumbnail Image
    Characterization of the apicoplast-localized enzyme TgUroD in Toxoplasma gondii reveals a key role of the apicoplast in heme biosynthesis
    Tjhin, ET ; Hayward, JA ; Mcfadden, G ; van Dooren, GG (ELSEVIER, 2020-02-07)
    Apicomplexan parasites such as Toxoplasma gondii possess an unusual heme biosynthesis pathway whose enzymes localize to the mitochondrion, cytosol, or apicoplast, a nonphotosynthetic plastid present in most apicomplexans. To characterize the involvement of the apicoplast in the T. gondii heme biosynthesis pathway, we investigated the role of the apicoplast-localized enzyme uroporphyrinogen III decarboxylase (TgUroD). We found that TgUroD knockdown impaired parasite proliferation, decreased free heme levels in the parasite, and decreased the abundance of heme-containing c-type cytochrome proteins in the parasite mitochondrion. We validated the effects of heme loss on mitochondrial cytochromes by knocking down cytochrome c/c1 heme lyase 1 (TgCCHL1), a mitochondrial enzyme that catalyzes the covalent attachment of heme to c-type cytochromes. TgCCHL1 depletion reduced parasite proliferation and decreased the abundance of c-type cytochromes. We further sought to characterize the overall importance of TgUroD and TgCCHL1 for both mitochondrial and general parasite metabolism. TgUroD depletion decreased cellular ATP levels, mitochondrial oxygen consumption, and extracellular acidification rates. By contrast, depletion of TgCCHL1 neither diminished ATP levels in the parasite nor impaired extracellular acidification rate, but resulted in specific defects in mitochondrial oxygen consumption. Together, our results indicate that the apicoplast has a key role in heme biology in T. gondii and is important for both mitochondrial and general parasite metabolism. Our study highlights the importance of heme and its synthesis in these parasites.