School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    No Preview Available
    Development of a transboundary model of livestock disease in Europe
    Bradhurst, R ; Garner, G ; Hóvári, M ; de la Puente, M ; Mintiens, K ; Yadav, S ; Federici, T ; Kopacka, I ; Stockreiter, S ; Kuzmanova, I ; Paunov, S ; Cacinovic, V ; Rubin, M ; Szilágyi, J ; Kókány, ZS ; Santi, A ; Sordilli, M ; Sighinas, L ; Spiridon, M ; Potocnik, M ; Sumption, K (Cold Spring Harbor Laboratory, 2021)
    Epidemiological models of notifiable livestock disease are typically framed at a national level and targeted for specific diseases. There are inherent difficulties in extending models beyond national borders as details of the livestock population, production systems and marketing systems of neighbouring countries are not always readily available. It can also be a challenge to capture heterogeneities in production systems, control policies, and response resourcing across multiple countries, in a single transboundary model. In this paper we describe EuFMDiS, a continental-scale modelling framework for transboundary animal disease, specifically designed to support emergency animal disease planning in Europe. EuFMDiS simulates the spread of livestock disease within and between countries and allows control policies to be enacted and resourced on per-country basis. It provides a sophisticated decision support tool that can be used to look at the risk of disease introduction, establishment and spread; control approaches in terms of effectiveness and costs; resource management; and post-outbreak management issues.
  • Item
    No Preview Available
    Post-outbreak surveillance strategies to support proof of freedom from foot-and-mouth disease
    Bradhurst, R ; Garner, G ; East, I ; Death, C ; Dodd, A ; Kompas, T ( 2021-04-28)
    Abstract Whilst emergency vaccination may help contain foot-and-mouth disease in a previously FMD-free country, its use complicates post-outbreak surveillance and the recovery of FMD-free status. A structured surveillance program is required that can distinguish between vaccinated and residually infected animals, and provide statistical confidence that the virus is no longer circulating in previously infected areas. Epidemiological models have been well-used to investigate the potential benefits of emergency vaccination during a control progam and when/where/whom to vaccinate in the face of finite supplies of vaccine and personnel. Less well studied are post-outbreak issues such as the management of vaccinated animals and the implications of having used vaccination during surveillance regimes to support proof-of-freedom. This paper presents enhancements to the Australian Animal Disease Model (AADIS) that allow comparisons of different post-outbreak surveillance sampling regimes for establishing proof-of-freedom from FMD. A case study is provided that compares a baseline surveillance sampling regime (derived from current OIE guidelines), with an alternative less intensive sampling regime. It was found that when vaccination was not part of the control program, a reduced sampling intensity significantly reduced the number of samples collected and the cost of the post-outbreak surveillance program, without increasing the risk of missing residual infected herds.