School of BioSciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Defining and evaluating predictions of joint species distribution models
    Wilkinson, DP ; Golding, N ; Guillera-Arroita, G ; Tingley, R ; McCarthy, MA ; Freckleton, R (WILEY, 2021-03)
    Abstract Joint species distribution models (JSDMs) simultaneously model the distributions of multiple species, while accounting for residual co‐occurrence patterns. Despite increasing adoption of JSDMs in the literature, the question of how to define and evaluate JSDM predictions has only begun to be explored. We define four different JSDM prediction types that correspond to different aspects of species distribution and community assemblage processes. Marginal predictions are environment‐only predictions akin to predictions from single‐species models; joint predictions simultaneously predict entire community assemblages; and conditional marginal and conditional joint predictions are made at the species or assemblage level, conditional on the known occurrence state of one or more species at a site. We define five different classes of metrics that can be used to evaluate these types of predictions: threshold‐dependent, threshold‐independent, community dissimilarity, species richness and likelihood metrics. We illustrate different prediction types and evaluation metrics using a case study in which we fit a JSDM to a frog occurrence dataset collected in Melbourne, Australia. Joint species distribution models present opportunities to investigate the facets of species distribution and community assemblage processes that are not possible to explore with single‐species models. We show that there are a variety of different metrics available to evaluate JSDM predictions, and that choice of prediction type and evaluation metric should closely match the questions being investigated.
  • Item
    Thumbnail Image
    A comparison of joint species distribution models for presence-absence data
    Wilkinson, DP ; Golding, N ; Guillera-Arroita, G ; Tingley, R ; McCarthy, MA ; Peres‐Neto, P (WILEY, 2019-02-01)
    1. Joint species distribution models (JSDMs) account for biotic interactions and missing environmental predictors in correlative species distribution models. Several different JSDMs have been proposed in the literature, but the use of different or conflicting nomenclature and statistical notation potentially obscures similarities and differences among them. Furthermore, new JSDM implementations have been illustrated with different case studies, preventing direct comparisons of computational and statistical performance. 2. We aim to resolve these outstanding issues by (a) highlighting similarities among seven presence–absence JSDMs using a clearly defined, singular notation; and (b) evaluating the computational and statistical performance of each JSDM using six datasets that vary widely in numbers of sites, species, and environmental covariates considered. 3. Our singular notation shows that many of the JSDMs are very similar, and in turn parameter estimates of different JSDMs are moderate to strongly, positively correlated. In contrast, the different JSDMs clearly differ in computational efficiency and memory limitations. 4. Our framework will allow ecologists to make educated decisions about the JSDM that best suits their objective, and enable wider uptake of JSDM methods among the ecological community.